ENVI  ENVI(TheEnvironmentforVisualizingImages)是美国ITTVisualInformationSolutions公司的旗舰产品。
ENVI由遥感领域的科学家采用IDL开发的一套功能强大的遥感图像处理软件;
它是快速、便捷、准确地从地理空间影像中提取信息的首屈一指的软件解决方案,它提供先进的,人性化的使用工具来方便用户读取、准备、探测、分析和共享影像中的信息。
今天,众多的影像分析师和科学家选择ENVI来从地理空间影像中提取信息。
已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋,测绘勘察和城市与区域规划等行业。
  创建于1977年的RSI(现为ITTVisualInformationSolutions公司)已经成功地为其用户提供了超过30年的科学可视化软件服务。
目前ITTVisualInformationSolutions的用户数超过150,000,遍布于80个国家与地区。
从2000年开始连续三年,ENVI被美国国家影像制图局(NIMA)等权威机构组织的Passfind项目遥感影像系统评比当中被评为“最佳的遥感目标识别软件”。
2004年RSI公司并入上市公司ITT公司,并于2006年5月正式成立ITTVisualInformationSolutions公司,ENVI&IDL的发展步伐更加有利与快捷,更多的新功能与算法加进到新版本中。
  强大的影像显示、处理和分析系统  ENVI包含齐全的遥感影像处理功能:常规处理、几何校正、定标、多光谱分析、高光谱分析、雷达分析、地形地貌分析、矢量应用、神经网络分析、区域分析、GPS联接、正射影象图生成、三维图像生成、丰富的可供二次开发调用的函数库、制图、数据输入/输出等功能组成了图像处理软件中非常全面的系统。
  ENVI对于要处理的图像波段数没有限制,可以处理最先进的卫星格式,如Landsat7、IKONOS、SPOT,RADARSAT,NASA,NOAA,EROS和TERRA,并准备接受未来所有传感器的信息。
  强大的多光谱影像处理功能  ENVI能够充分提取图像信息,具备全套完整的遥感影像处理工具,能够进行文件处理、图像增强、掩膜、预处理、图像计算和统计,完整的分类及后处理工具,及图像变换和滤波工具、图像镶嵌、融合等功能。
ENVI遥感影像处理软件具有丰富完备的投影软件包,可支持各种投影类型。
同时,ENVI还创造性地将一些高光谱数据处理方法用于多光谱影像处理,可更有效地进行知识分类、土地利用动态监测。
  更便捷地集成栅格和矢量数据  ENVI包含所有基本的遥感影像处理功能,如:校正、定标、波段运算、分类、对比增强、滤波、变换、边缘检测及制图输出功能,并可以加注汉字。
ENVI具有对遥感影像进行配准和正射校正的功能,可以给影像添加地图投影,并与各种GIS数据套合。
ENVI的矢量工具可以进行屏幕数字化、栅格和矢量叠合,建立新的矢量层、编辑点、线、多边形数据,缓冲区分析,创建并编辑属性并进行相关矢量层的属性查询。
  ENVI的集成雷达分析工具助您快速处理雷达数据  用ENVI完整的集成式雷达分析工具可以快速处理雷达SAR数据,提取CEOS信息并浏览RADARSAT和ERS-1数据。
用天线阵列校正、斜距校正、自适应滤波等功能提高数据的利用率。
纹理分析功能还可以分段分析SAR数据。
ENVI还可以处理极化雷达数据,用户可以从SIR-C和AIRSAR压缩数据中选择极化和工作频率,用户还可以浏览和比较感兴趣区的极化信号,并创建幅度图像和相位图像。
  地形分析工具  ENVI具有三维地形可视分析及动画飞行功能,能按用户制定路径飞行,并能将动画序列输出为MPEG文件格式,便于用户演示成果。
  准备您的影像  ENVI提供了自动预处理工具,可以快速、轻松地预处理影像,以便进行查看浏览或其他分析。
通过ENVI,您可以对影像进行以下处理:  •正射校正  •影像配准  •影像定标  •大气校正  •创建矢量叠加  •确定感兴趣区域(ROIs)  •创建数字高程模型(DEMs)  •影像融合,掩膜和镶嵌  •调整大小,旋转,或数据类型转换  探测影像  ENVI提供了一个直观的用户界面和易用的工具,让您轻松、快速地浏览和探测影像。
您可以使用ENVI完成的工作包括:浏览大型数据集和元数据,对影像进行视觉对比,创建强大的3D场景,创建散点图,探测像素特征等。
  分析影像  ENVI提供了业界领先的图像处理功能,方便您从事各种用途的信息提取。
ENVI提供了一套完整的经科学实践证明的成熟工具来帮助您分析影像。
  数据分析工具  ENVI包括一套综合数据分析工具,通过实践证明的成熟算法快速、便捷、准确地分析图像。
  •创建地理空间统计资料,如自相关系数和协方差  •计算影像统计信息,如平均值、最小/最大值、标准差  •提取线性特征  •合成雷达影像  •主成分计算  •变化检测  •空间特征测量  •地形建模和特征提取  •应用通用或自定义的滤波器  •执行自定义的波段和光谱数学函数  光谱分析工具  光谱分析通过像素在不同波长范围上的反应,来获取有关物质的信息。
ENVI拥有目前最先进的,易于使用的光谱分析工具,能够很容易地进行科学的影像分析。
ENVI的光谱分析工具包括以下功能:  •监督和非监督方法进行影像分类  •使用强大的光谱库识别光谱特征  •检测和识别目标  •识别感兴趣的特征  •对感兴趣物质的分析和制图  •执行像素级和亚像素级的分析  •使用分类后处理工具完善分类结果  •使用植被分析工具计算森林健康度  共享您的信息  ENVI能轻松地整合现有的工作流,让您能在任何环境中与同事们分享地图和报告。
所处理的图像可以输出成常见的矢量格式和栅格影像便于协同和演示。
  自定义您的地理空间影像应用  ENVI建立于一个强大的开发语言—IDL之上。
IDL允许对其特性和功能进行扩展或自定义,以符合用户的具体要求。
这个强大而灵活的平台,可以让您创建批处理、自定义菜单、添加自己的算法和工具,甚至将C++和Java代码集成到您的工具中等。
  自2007年起,与著名的GIS厂商ESRI公司开展全面战略合作,ENVIReaderforArcGIS模块让ArcGIS系列软件全面支持ENVI的数据格式,最新版本ENVI4.5完全支持ArcGIS的Geodatabase等。
2024/10/15 19:08:32 2.72MB envi
1
Matlab图像分析工具包,纹理分析Mazda
2024/3/25 14:28:50 4.02MB Matlab
1
《基于fpga的嵌入式图像处理系统设计》详细介绍了fpga(fieldprogrammablegatearray,现场可编程门阵列)这种新型可编程电子器件的特点,对fpga的各种编程语言的发展历程进行了回顾,并针对嵌入式图像处理系统的特点和应用背景,详细介绍了如何利用fpga的硬件并行性特点研制开发高性能嵌入式图像处理系统。
作者还结合自己的经验,介绍了研制开发基于fpga的嵌入式图像处理系统所需要的正确思路以及许多实用性技巧,并给出了许多图像处理算法在fpga上的具体实现方法以及多个基于fpga实现嵌入式图像处理系统的应用实例。
  《基于fpga的嵌入式图像处理系统设计》对fpga技术的初学者以及已经具有比较丰富的设计经验的读者来说都有很好的参考价值,也将为从事基于fpga的嵌入式系统开发和应用的软硬件工程师和科研人员提供一本比较系统、全面的学习材料。
目录1图像处理1.1基本定义1.2图像形成1.3图像处理操作1.4应用实例1.5实时图像处理1.6嵌入式图像处理1.7串行处理1.8并行性1.9硬件图像处理系统2现场可编程门阵列2.1可编程逻辑器件2.1.1fpga与asic2.2fpga和图像处理2.3fpga的内部2.3.1逻辑器件2.3.2互连2.3.3输入和输出2.3.4时钟2.3.5配置2.3.6功耗2.4fpga产品系列及其特点2.4.1xilinx2.4.2altera2.4.3lattice半导体公司2.4.4achronix2.4.5siliconblue2.4.6tabula2.4.7actel2.4.8atmel2.4.9quicklogic2.4.10mathstar2.4.11cypress2.5选择fpga或开发板3编程语言3.1硬件描述语言3.2基于软件的语言3.2.1结构化方法3.2.2扩展语言3.2.3本地编译技术3.3visual语言3.3.1行为式描述3.3.2数据流3.3.3混合型3.4小结4设计流程4.1问题描述4.2算法开发4.2.1算法开发过程4.2.2算法结构4.2.3fpga开发问题4.3结构选择4.3.1系统级结构4.3.2计算结构4.3.3硬件和软件的划分4.4系统实现4.4.1映射到fpga资源4.4.2算法映射问题4.4.3设计流程4.5为调整和调试进行设计4.5.1算法调整4.5.2系统调试5映射技术5.1时序约束5.1.1低级流水线5.1.2处理同步5.1.3多时钟域5.2存储器带宽约束5.2.1存储器架构5.2.2高速缓存5.2.3行缓冲5.2.4其他存储器结构5.3资源约束5.3.1资源复用5.3.2资源控制器5.3.3重配置性5.4计算技术5.4.1数字系统5.4.2查找表5.4.3cordic5.4.4近似5.4.5其他方法5.5小结6点操作6.1单幅图像上的点操作6.1.1对比度和亮度调节6.1.2全局阈值化和等高线阈值化6.1.3查找表实现6.2多幅图像上的点操作6.2.1图像均值6.2.2图像相减6.2.3图像比对6.2.4亮度缩放6.2.5图像掩模6.3彩色图像处理6.3.1伪彩色6.3.2色彩空间转换6.3.3颜色阈值化6.3.4颜色校正6.3.5颜色增强6.4小结7直方图操作7.1灰度级直方图7.1.1数据汇集7.1.2直方图均衡化7.1.3自动曝光7.1.4阈值选择7.1.5直方图相似性7.2多维直方图7.2.1三角阵列7.2.2多维统计信息7.2.3颜色分割7.2.4颜色索引7.2.5纹理分析8局部滤波器8.1缓存8.2线性滤波器8.2.1噪声平滑8.2.2边缘检测8.2.3边缘增强8.2.4线性滤波器技术8.3非线性滤波器8.3.1边缘方向8.3.2非极大值抑制8.3.3零交点检测8.4排序滤波器8.4.1排序滤波器的排序网络8.4.2自适应直方图均衡化8.5颜色滤波器8.6形态学滤波器8.6.1二值图像的形态学滤波8.6.2灰度图像形态学8.6.3颜色形态学滤波8.7自适应阈值分割8.7.1误差扩散8.8小结9几何变换9.1前向映射9.1.1可分离映射9.2逆向映射9.3插值
2023/8/9 21:49:08 53.81MB FPGA 嵌入式 图像处理
1
运用MATLABR2014a来完成灰度共生矩阵各特征参数的求解。
以纸作为纹理分析的对象。
首先需将彩色图像将各颜色分量转化为灰度。
所用图像的灰度级为256。
为了减少计算量,对原始图像灰度级压缩,将灰度量化成16级。
计算四个共生矩阵P,取距离为1,角度分别为0,45,90,135。
对共生矩阵进行归一化,求出最常用的能量、熵、惯性矩、相关4个纹理参数。
最后求出能量、熵、惯性矩、相关的均值和标准差,作为最终8维纹理特征。
2023/6/2 16:52:46 713B 灰度共生
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡