C语言算法速查手册目录第1章 绪论 11.1 程序设计语言概述 11.1.1 机器语言 11.1.2 汇编语言 21.1.3 高级语言 21.1.4 C语言 31.2 C语言的优点和缺点 41.2.1 C语言的优点 41.2.2 C语言的缺点 61.3 算法概述 71.3.1 算法的基本特征 71.3.2 算法的复杂度 81.3.3 算法的准确性 101.3.4 算法的稳定性 14第2章 复数运算 182.1 复数的四则运算 182.1.1 [算法1] 复数乘法 182.1.2 [算法2] 复数除法 202.1.3 【实例5】复数的四则运算 222.2 复数的常用函数运算 232.2.1 [算法3] 复数的乘幂 232.2.2 [算法4] 复数的n次方根 252.2.3 [算法5] 复数指数 272.2.4 [算法6] 复数对数 292.2.5 [算法7] 复数正弦 302.2.6 [算法8] 复数余弦 322.2.7 【实例6】复数的函数运算 34第3章 多项式计算 373.1 多项式的表示方法 373.1.1 系数表示法 373.1.2 点表示法 383.1.3 [算法9] 系数表示转化为点表示 383.1.4 [算法10] 点表示转化为系数表示 423.1.5 【实例7】 系数表示法与点表示法的转化 463.2 多项式运算 473.2.1 [算法11] 复系数多项式相乘 473.2.2 [算法12] 实系数多项式相乘 503.2.3 [算法13] 复系数多项式相除 523.2.4 [算法14] 实系数多项式相除 543.2.5 【实例8】 复系数多项式的乘除法 563.2.6 【实例9】 实系数多项式的乘除法 573.3 多项式的求值 593.3.1 [算法15] 一元多项式求值 593.3.2 [算法16] 一元多项式多组求值 603.3.3 [算法17] 二元多项式求值 633.3.4 【实例10】 一元多项式求值 653.3.5 【实例11】 二元多项式求值 66第4章 矩阵计算 684.1 矩阵相乘 684.1.1 [算法18] 实矩阵相乘 684.1.2 [算法19] 复矩阵相乘 704.1.3 【实例12】实矩阵与复矩阵的乘法 724.2 矩阵的秩与行列式值 734.2.1 [算法20] 求矩阵的秩 734.2.2 [算法21] 求一般矩阵的行列式值 764.2.3 [算法22] 求对称正定矩阵的行列式值 804.2.4 【实例13】求矩阵的秩和行列式值 824.3 矩阵求逆 844.3.1 [算法23] 求一般复矩阵的逆 844.3.2 [算法24] 求对称正定矩阵的逆 904.3.3 [算法25] 求托伯利兹矩阵逆的Trench方法 924.3.4 【实例14】验证矩阵求逆算法 974.3.5 【实例15】验证T矩阵求逆算法 994.4 矩阵分解与相似变换 1024.4.1 [算法26] 实对称矩阵的LDL分解 1024.4.2 [算法27] 对称正定实矩阵的Cholesky分解 1044.4.3 [算法28] 一般实矩阵的全选主元LU分解 1074.4.4 [算法29] 一般实矩阵的QR分解 1124.4.5 [算法30] 对称实矩阵相似变换为对称三对角阵 1164.4.6 [算法31] 一般实矩阵相似变换为上Hessen-Burg矩阵 1214.4.7 【实例16】对一般实矩阵进行QR分解 1264.4.8 【实例17】对称矩阵的相似变换 1274.4.9 【实例18】一般实矩阵相似变换 1294.5 矩阵特征值的计算 1304.5.1 [算法32] 求上Hessen-Burg矩阵全部特征值的QR方法 1304.5.2 [算法33] 求对称三对角阵的全部特征值 1374.5.3 [算法34] 求对称矩阵特征值的雅可比法 1434.5.4 [算法35] 求对称矩阵特征值的雅可比过关法 1474.5.5 【实例19】求上Hessen-Burg矩阵特征值 1514.5.6 【实例20】分别用两种雅克比法求对称矩阵特征值 152第5章 线性代数方程组的求解 1545.1 高斯消去法 1545.1.1 [算法36] 求解复系数方程组的全选主元高斯消去法 1555.1.2 [算法37] 求解实系数方程组的全选主元高斯消去法 1605.1.3 [算法38] 求解复系数方程组的全选主元高斯-约当消去法 1635.1.4 [算法39] 求解实系数方程组的全选主元高斯-约当消去法 1685.1.5 [算法40] 求解大型
2023/10/26 14:13:36 218KB 算法速查
1
本文主要的目标读者是机器学习爱好者或数据科学的初学者,以及对学习和应用机器学习算法解决实际问题抱有浓厚兴趣的读者。
面对大量的机器学习算法,初学者通常会问自己一个典型的问题:「我该使用哪一种算法?」有很多因素会影响这一问题的答案,比如:数据的大小、质量及性质可用计算时间任务的急迫性数据的使用用途在没有测试过不同算法之前,即使是经验丰富的数据科学家和机器学习算法开发者也都不能分辨出哪种算法功能最好。
我们并不提倡一步到位,但是我们确实希望根据一些明确的因素为算法的选择提供一些参考意见。
机器学习算法速查表可帮助你从大量算法之中筛选出解决你的特定问题的算法,同时本文也将介绍如何使用该速查表。
由于该速查表
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡