FFT算法的实现例程,以及不同参数对FFT算法计算精度影响的分析。
2025/9/26 14:05:41 667B FFT算法 对比
1
计算日出日落时间的源码,http://www.supercss.com源码的基础上做了修改,并改正了原算法的计算错误。
(原算法计算的白天黑夜的时间长度正确,但时刻不对。
2025/7/2 9:16:51 463KB 源码 日出日落时间
1
这份资料是吉林省辽源市田家炳高级中学友好学校第六十八届2019-2020学年高二数学上学期期末联考试题,针对文科生。
试题分为选择题和非选择题两部分,总分150分,考试时间120分钟。
试题涉及了多项数学知识点,包括但不限于:1.**秦九韶算法**:在第一道选择题中,要求使用秦九韶算法计算多项式在特定点的值,这是一个中国古代的高效算法,用于求解多项式的值。
2.**数值比较**:第二道选择题要求比较不同数制下的数值大小,涉及到数制转换和数值的比较。
3.**程序流程图理解**:第三题考察对程序流程图的理解,要求判断输出的k值,这涉及到逻辑思维和算法分析。
4.**系统抽样**:第四题提到系统抽样方法,这是一种统计学中的抽样方法,用于从大样本中抽取代表性子集。
5.**平均数与方差**:第五题对比了甲乙两名运动员的成绩平均数和方差,涉及统计学中的中心趋势度量和离中趋势度量。
6.**频率分布直方图**:第六题通过频率分布直方图推断众数和中位数,考察了数据分析能力。
7.**逻辑关系**:第七题涉及逻辑推理,"ab>1"是否能推出"a>b>0",这是集合论和逻辑学中的概念。
8.**命题否定**:第八题要求
2025/6/19 4:30:26 187KB
1

在MATLAB中,计算三维散乱点云的曲率是一项重要的几何分析任务,尤其是在计算机图形学、图像处理和机器学习等领域。
曲率是衡量表面局部弯曲程度的一个度量,可以帮助我们理解点云数据的形状特征。
曲率的计算通常涉及主曲率、高斯曲率和平均曲率三个关键概念。
主曲率是描述曲面在某一点沿两个正交方向弯曲的程度,通常记为K1和K2,其中K1是最大曲率,K2是最小曲率。
主曲率可以提供关于曲线形状的局部信息,例如,当K1=K2时,表明该点处的曲面是球形;
当K1=0或K2=0时,可能对应于平面区域。
高斯曲率(Gaussian Curvature)是主曲率的乘积,记为K = K1 * K2。
高斯曲率综合了主曲率的信息,能反映曲面上任意点的全局弯曲特性。
如果高斯曲率为正,表明该点在凸形曲面上;
若为负,则在凹形曲面上;
为零时,表示该点位于平面上。
平均曲率(Mean Curvature)是主曲率的算术平均值,H = (K1 + K2) / 2。
它提供了曲面弯曲的平均程度,对于理解物体表面的整体形状变化非常有用。
例如,平均曲率为零的点可能表示曲面的边缘或者尖锐转折。
在MATLAB中,计算这些曲率通常需要以下步骤:1. **数据预处理**:你需要加载散乱点云数据。
这可以通过读取txt文件(如www.pudn.com.txt)或使用特定的数据集来完成。
数据通常包含每个点的XYZ坐标。
2. **邻域搜索**:确定每个点的邻域,通常采用球形邻域或基于距离的邻域。
邻域的选择直接影响曲率计算的精度和稳定性。
3. **拟合曲面**:使用最近邻插值、移动最小二乘法(Moving Least Squares, MLS)或其他方法,将点云数据拟合成一个连续曲面。
在本例中,"demo_MLS"可能是一个实现MLS算法的MATLAB脚本。
4. **计算几何属性**:在拟合的曲面上,计算每个点的曲率。
这涉及到计算曲面的曲率矩阵、主轴和主曲率。
同时,高斯曲率和平均曲率可以通过已知的主曲率直接计算得出。
5. **结果可视化**:你可以使用MATLAB的图形工具,如`scatter3`或`patch`函数,将曲率信息以颜色编码的方式叠加到原始点云上,以直观展示曲率分布。
在实际应用中,曲率计算对于识别物体特征、形状分析和目标检测等任务具有重要价值。
例如,在机器人导航、医学图像分析和3D重建等领域,理解点云数据的几何特性至关重要。
总结来说,MATLAB中的算法通过一系列数学操作和数据处理,可以有效地计算三维散乱点云的主曲率、高斯曲率和平均曲率,从而揭示其内在的几何结构和形状特征。
正确理解和运用这些曲率概念,有助于在相关领域进行更深入的研究和开发。
2025/6/18 16:18:34 130KB
1
人体BMI/体脂率计算器VB6.0自制自用工具,带VB6.0工程源文件;
分享给大家。
可以通过腰围体重算法和BMI两种算法计算人体的体脂率。
告诉自己的身体胖瘦状况是否合适,注意锻炼和饮食。
2025/5/22 14:26:41 1.17MB 体脂率 BMI 减肥 体重
1
区域复制粘贴篡改检测算法是以图像块匹配为基础的,然而传统的匹配算法计算量大,匹配速度慢,效率低下.针对现有的图像内区域复制粘贴检测算法计算量大,时间复杂度高的问题提出一种有效快速的检测与定位篡改区域算法.首先利用小波变换获取图像低频区域,然后对得到的图像低频部分进行分割,然后对分割后得到的每个图像块进行DCT变换,通过特征向量排序缩小匹配空间,最后通过经验阈值进行真伪鉴定,实验结果表明该算法过程中除掉图像冗余,减少检测块数,降低了时间复杂度,提高了检测效率。
1
包含了使用Lomb-Scargle算法计算非均匀时间序列周期频谱的程序及其源码
2025/2/19 20:21:45 719KB 频谱,redfit
1
MATLAB语言常用算法程序集书中4-17章代码,都是一些常用的程序第4章:插值函数名功能Language求已知数据点的拉格朗日插值多项式Atken求已知数据点的艾特肯插值多项式Newton求已知数据点的均差形式的牛顿插值多项式Newtonforward求已知数据点的前向牛顿差分插值多项式Newtonback求已知数据点的后向牛顿差分插值多项式Gauss求已知数据点的高斯插值多项式Hermite求已知数据点的埃尔米特插值多项式SubHermite求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值SecSample求已知数据点的二次样条插值多项式及其插值点处的值ThrSample1求已知数据点的第一类三次样条插值多项式及其插值点处的值ThrSample2求已知数据点的第二类三次样条插值多项式及其插值点处的值ThrSample3求已知数据点的第三类三次样条插值多项式及其插值点处的值BSample求已知数据点的第一类B样条的插值DCS用倒差商算法求已知数据点的有理分式形式的插值分式Neville用Neville算法求已知数据点的有理分式形式的插值分式FCZ用倒差商算法求已知数据点的有理分式形式的插值分式DL用双线性插值求已知点的插值DTL用二元三点拉格朗日插值求已知点的插值DH用分片双三次埃尔米特插值求插值点的z坐标第5章:函数逼近Chebyshev用切比雪夫多项式逼近已知函数Legendre用勒让德多项式逼近已知函数Pade用帕德形式的有理分式逼近已知函数lmz用列梅兹算法确定函数的最佳一致逼近多项式ZJPF求已知函数的最佳平方逼近多项式FZZ用傅立叶级数逼近已知的连续周期函数DFF离散周期数据点的傅立叶逼近SmartBJ用自适应分段线性法逼近已知函数SmartBJ用自适应样条逼近(第一类)已知函数multifit离散试验数据点的多项式曲线拟合LZXEC离散试验数据点的线性最小二乘拟合ZJZXEC离散试验数据点的正交多项式最小二乘拟合第6章:矩阵特征值计算Chapoly通过求矩阵特征多项式的根来求其特征值pmethod幂法求矩阵的主特征值及主特征向量rpmethod瑞利商加速幂法求对称矩阵的主特征值及主特征向量spmethod收缩法求矩阵全部特征值ipmethod收缩法求矩阵全部特征值dimethod位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量qrtzQR基本算法求矩阵全部特征值hessqrtz海森伯格QR算法求矩阵全部特征值rqrtz瑞利商位移QR算法求矩阵全部特征值第7章:数值微分MidPoint中点公式求取导数ThreePoint三点法求函数的导数FivePoint五点法求函数的导数DiffBSample三次样条法求函数的导数SmartDF自适应法求函数的导数CISimpson辛普森数值微分法法求函数的导数Richason理查森外推算法求函数的导数ThreePoint2三点法求函数的二阶导数FourPoint2四点法求函数的二阶导数FivePoint2五点法求函数的二阶导数Diff2BSample三次样条法求函数的二阶导数第8章:数值积分CombineTraprl复合梯形公式求积分IntSimpson用辛普森系列公式求积分NewtonCotes用牛顿-科茨系列公式求积分IntGauss用高斯公式求积分IntGaussLada用高斯拉道公式求积分IntGaussLobato用高斯—洛巴托公式求积分IntSample用三次样条插值求积分IntPWC用抛物插值求积分IntGaussLager用高斯-拉盖尔公式求积分IntGaussHermite用高斯-埃尔米特公式求积分IntQBXF1求第一类切比雪夫积分IntQBXF2求第二类切比雪夫积分DblTraprl用梯形公式求重积分DblSimpson用辛普森公式求重积分IntDBGauss用高斯公式求重积分第9章:方程求根BenvliMAX贝努利法求按模最大实根BenvliMIN贝努利法求按模最小实根HalfInterval用二分法求方程的一个根hj用黄金分割法求方程的一个根StablePoint用不动点迭代法求方程的一个根AtkenStablePoint用艾肯特加速的不动点迭代法求方程的一个根StevenStablePoint用史蒂芬森加速的不动点迭代法求方程的一个根Secant用一般弦截法求方程的一个根SinleSecant用单点弦截法求方程的一个根DblSecant用双点弦截法求方程的一个根PallSecant用平行弦截法求方程的一个根ModifSecant用改进弦截法求方程的一个根StevenSecant用史蒂芬森法求方程的一个根PYZ用劈因子法求方程的一个二次因子Parabola用抛物线法求方程的一个根QBS用钱伯斯法求方程的一个根NewtonRoot用牛顿法求方程的一个根SimpleNewton用简化牛顿法求方程的一个根NewtonDown用牛顿下山法求方程的一个根YSNewton逐次压缩牛顿法求多项式的全部实根Union1用联合法1求方程的一个根TwoStep用两步迭代法求方程的一个根Montecarlo用蒙特卡洛法求方程的一个根MultiRoot求存在重根的方程的一个重根第10章:非线性方程组求解mulStablePoint用不动点迭代法求非线性方程组的一个根mulNewton用牛顿法法求非线性方程组的一个根mulDiscNewton用离散牛顿法法求非线性方程组的一个根mulMix用牛顿-雅可比迭代法求非线性方程组的一个根mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根mulDNewton用牛顿下山法求非线性方程组的一个根mulGXF1用两点割线法的第一种形式求非线性方程组的一个根mulGXF2用两点割线法的第二种形式求非线性方程组的一个根mulVNewton用拟牛顿法求非线性方程组的一组解mulRank1用对称秩1算法求非线性方程组的一个根mulDFP用D-F-P算法求非线性方程组的一组解mulBFS用B-F-S算法求非线性方程组的一个根mulNumYT用数值延拓法求非线性方程组的一组解DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解mulFastDown用最速下降法求非线性方程组的一组解mulGSND用高斯牛顿法求非线性方程组的一组解mulConj用共轭梯度法求非线性方程组的一组解mulDamp用阻尼最小二乘法求非线性方程组的一组解第11章:解线性方程组的直接法SolveUpTriangle求上三角系数矩阵的线性方程组Ax=b的解GaussXQByOrder高斯顺序消去法求线性方程组Ax=b的解GaussXQLineMain高斯按列主元消去法求线性方程组Ax=b的解GaussXQAllMain高斯全主元消去法求线性方程组Ax=b的解GaussJordanXQ高斯-若当消去法求线性方程组Ax=b的解Crout克劳特分解法求线性方程组Ax=b的解Doolittle多利特勒分解法求线性方程组Ax=b的解SymPos1LL分解法求线性方程组Ax=b的解SymPos2LDL分解法求线性方程组Ax=b的解SymPos3改进的LDL分解法求线性方程组Ax=b的解followup追赶法求线性方程组Ax=b的解InvAddSide加边求逆法求线性方程组Ax=b的解Yesf叶尔索夫求逆法求线性方程组Ax=b的解qrxqQR分解法求线性方程组Ax=b的解第12章:解线性方程组的迭代法rs里查森迭代法求线性方程组Ax=b的解crs里查森参数迭代法求线性方程组Ax=b的解grs里查森迭代法求线性方程组Ax=b的解jacobi雅可比迭代法求线性方程组Ax=b的解gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解SOR超松弛迭代法求线性方程组Ax=b的解SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解JOR雅可比超松弛迭代法求线性方程组Ax=b的解twostep两步迭代法求线性方程组Ax=b的解fastdown最速下降法求线性方程组Ax=b的解conjgrad共轭梯度法求线性方程组Ax=b的解preconjgrad预处理共轭梯度法求线性方程组Ax=b的解BJ块雅克比迭代法求线性方程组Ax=b的解BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解BSOR块逐次超松弛迭代法求线性方程组Ax=b的解第13章:随机数生成PFQZ用平方取中法产生随机数列MixMOD用混合同余法产生随机数列MulMOD1用乘同余法1产生随机数列MulMOD2用乘同余法2产生随机数列PrimeMOD用素数模同余法产生随机数列PowerDist产生指数分布的随机数列LaplaceDist产生拉普拉斯分布的随机数列RelayDist产生瑞利分布的随机数列CauthyDist产生柯西分布的随机数列AELDist产生爱尔朗分布的随机数列GaussDist产生正态分布的随机数列WBDist产生韦伯西分布的随机数列PoisonDist产生泊松分布的随机数列BenuliDist产生贝努里分布的随机数列BGDist产生贝努里-高斯分布的随机数列TwoDist产生二项式分布的随机数列第14章:特殊函数计算gamafun用逼近法计算伽玛函数的值lngama用Lanczos算法计算伽玛函数的自然对数值Beta用伽玛函数计算贝塔函数的值gamap用逼近法计算不完全伽玛函数的值betap用逼近法计算不完全贝塔函数的值bessel用逼近法计算伽玛函数的值bessel2用逼近法计算第二类整数阶贝塞尔函数值besselm用逼近法计算变型的第一类整数阶贝塞尔函数值besselm2用逼近法计算变型的第二类整数阶贝塞尔函数值ErrFunc用高斯积分计算误差函数值SIx用高斯积分计算正弦积分值CIx用高斯积分计算余弦积分值EIx用高斯积分计算指数积分值EIx2用逼近法计算指数积分值Ellipint1用高斯积分计算第一类椭圆积分值Ellipint2用高斯积分计算第二类椭圆积分值第15章:常微分方程的初值问题DEEuler用欧拉法求一阶常微分方程的数值解DEimpEuler用隐式欧拉法求一阶常微分方程的数值解DEModifEuler用改进欧拉法求一阶常微分方程的数值解DELGKT2_mid用中点法求一阶常微分方程的数值解DELGKT2_suen用休恩法求一阶常微分方程的数值解DELGKT3_suen用休恩三阶法求一阶常微分方程的数值解DELGKT3_kuta用库塔三阶法求一阶常微分方程的数值解DELGKT4_lungkuta用经典龙格-库塔法求一阶常微分方程的数值解DELGKT4_jer用基尔法求一阶常微分方程的数值解DELGKT4_qt用变形龙格-库塔法求一阶常微分方程的数值解DELSBRK用罗赛布诺克半隐式法求一阶常微分方程的数值解DEMS用默森单步法求一阶常微分方程的数值解DEMiren用米尔恩法求一阶常微分方程的数值解DEYDS用亚当斯法求一阶常微分方程的数值解DEYCJZ_mid用中点-梯形预测校正法求一阶常微分方程的数值解DEYCJZ_adms用阿达姆斯预测校正法求一阶常微分方程的数值解DEYCJZ_adms2用密伦预测校正法求一阶常微分方程的数值解DEYCJZ_yds用亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_myds用修正的亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_hm用汉明预测校正法求一阶常微分方程的数值解DEWT用外推法求一阶常微分方程的数值解DEWT_glg用格拉格外推法求一阶常微分方程的数值解第16章:偏微分方程的数值解法peEllip5用五点差分格式解拉普拉斯方程peEllip5m用工字型差分格式解拉普拉斯方程peHypbYF用迎风格式解对流方程peHypbLax用拉克斯-弗里德里希斯格式解对流方程peHypbLaxW用拉克斯-温德洛夫格式解对流方程peHypbBW用比姆-沃明格式解对流方程peHypbRich用Richtmyer多步格式解对流方程peHypbMLW用拉克斯-温德洛夫多步格式解对流方程peHypbMC用MacCormack多步格式解对流方程peHypb2LF用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peHypb2FL用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peParabExp用显式格式解扩散方程的初值问题peParabTD用跳点格式解扩散方程的初值问题peParabImp用隐式格式解扩散方程的初边值问题peParabKN用克拉克-尼科尔森格式解扩散方程的初边值问题peParabWegImp用加权隐式格式解扩散方程的初边值问题peDKExp用指数型格式解对流扩散方程的初值问题peDKSam用萨马尔斯基格式解对流扩散方程的初值问题第17章:数据统计和分析MultiLineReg用线性回归法估计一个因变量与多个自变量之间的线性关系PolyReg用多项式回归法估计一个因变量与一个自变量之间的多项式关系CompPoly2Reg用二次完全式回归法估计一个因变量与两个自变量之间的关系CollectAnaly用最短距离算法的系统聚类对样本进行聚类DistgshAnalysis用Fisher两类判别法对样本进行分类MainAnalysis对样本进行主成分分析
2025/1/7 19:17:40 113KB matlab 算法 常用程序
1
###HellaTAS-71版本标定流程解析####一、概述HellaTAS-71版本标定流程文档详细介绍了如何对HellaTAS-71系列的小总成进行标定,确保其性能达到最优状态。
整个过程分为初始化、静态标定与动态优化三个阶段。
本文将深入探讨这些阶段的具体步骤和技术细节。
####二、初始化阶段在初始化阶段,主要任务是完成传感器的基本配置和准备。
具体步骤包括:1.**连接传感器**:将待标定的最小总成(传感器)连接至测试台。
2.**供电**:对连接好的传感器进行上电处理。
3.**软件准备**:通过调用`APS.dll`文件来实现以下功能:-**创建芯片目标**:为传感器的芯片创建一个目标对象,以便后续操作。
-**初始化芯片目标**:进一步配置芯片目标,如设置芯片参数等。
-**创建传感器目标**:基于芯片目标创建传感器目标。
-**设置编程参数**:根据需要设置传感器的编程参数。
此外,文档还特别指出,对于ASIC的不同命名(如ASIC1、ASIC2等)以及PGI2代通讯端口参数的设置需参照帮助文件。
这一阶段的目标是确保所有硬件设备都已正确连接,并且软件环境已经准备好,为后续标定流程打下基础。
####三、静态标定阶段静态标定阶段是在不受扭状态下进行的,目的是对传感器的基本输出特性进行校准。
该阶段主要包括以下步骤:1.**读取OTP位**:使用`APS.dll`中的函数读取传感器内部已烧写的OTP位串,并将其保存以便追溯。
2.**写入位串**:将读取到的位串写回传感器。
3.**信号检测与调整**:-检测T1、T2信号的频率和占空比。
-通过公式计算T1ROC和T2ROC值,并进行相应的调整。
-公式示例:\(T1ROC=(T1-50)÷75×12×3072÷20\),其中\(T1\)为当前T1信号的占空比。
-根据计算结果调整T1、T2信号,以确保其处于合理的范围内。
4.**角度信号的静态标定**:-读取P、S信号的占空比,并通过特定算法计算角度偏移值。
-调整角度信号,使其满足静态标定的要求。
此阶段通过多次调整和检测,确保传感器在不受扭状态下能够提供准确的输出信号。
####四、动态优化阶段动态优化阶段则是在传感器受到外部旋转力的情况下进行,旨在进一步优化传感器的性能。
具体步骤如下:1.**驱动伺服电机**:在不受扭的状态下,顺时针和逆时针旋转传感器360度,并记录下各个信号的变化情况。
2.**数据处理与分析**:-对采集到的数据进行平均处理,得到T1_AV和T2_AV的平均值。
-基于平均值再次计算ROC值,进一步调整信号。
3.**信号优化**:通过综合前两次ROC值和动态采集的ROC值进行信号优化,确保传感器在动态条件下的性能也达到最优。
####五、总结通过对HellaTAS-71版本标定流程的详细分析,我们可以看出整个标定过程不仅涉及硬件的连接与调试,还需要软件层面的支持与配合。
从初始化到静态标定再到动态优化,每个阶段都有明确的目标和细致的操作指南,确保传感器能够在各种条件下都能发挥最佳性能。
这对于提高产品的可靠性和稳定性至关重要。
2024/12/31 17:07:02 639KB Hella
1
利用遗传算法计算一元函数的极值2个文件,包括一个工具箱,1个.m文件
2024/11/29 17:27:32 421KB MATLAB
1
共 63 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡