《随机过程教程讲义》是一本系统介绍随机过程理论及其应用的教学资料,涵盖基础概念、模型构建及实际案例分析,适用于科研与教学。


### 随机过程讲义知识点解析

#### 马尔可夫链的基本概念与性质

马尔可夫链是一种重要的随机过程模型,其特点在于系统在任一时刻的状态仅依赖于前一个状态而与其他历史无关。
这种特性使得马尔可夫链被广泛应用于统计学、计算机科学、物理学和工程学等领域。


**一步转移概率矩阵与状态关系**

讲义中通过具体例子展示了如何构建一步转移概率矩阵,并分析了各个状态之间的相互联系。
例如,对于一个包含{0,1,2,3}的状态集的马尔可夫链,其一步转移概率矩阵如下所示:

[
P = begin{pmatrix}
1/2 & 1/2 & 0 & 0 \1/4 & 1/4 & 1/4 & 1/4 \0 & 0 & 0 & 1
end{pmatrix}
]

通过分析矩阵中的元素,可以得知状态0和状态1之间存在互达性(即两者间可相互转换),而从状态2可以到达其他所有状态,但一旦进入状态3,则永远停留在那里。
因此,状态3是一个吸收态。


#### 遍历性与平稳分布

遍历性是马尔可夫链的重要性质之一,表示在长时间运行后每个状态的访问频率趋于稳定值,显示出系统的长期行为模式。
而平稳分布则描述了这一稳定的概率分布情况。


讲义中讨论了两种不同的一步转移矩阵,并分析它们是否具有遍历性。
第一种情况下该马尔可夫链具备遍历性并计算出了其平稳分布(pi),满足条件(pi P = pi);
而在第二种情形下,由于n步转移矩阵显示随时间变化而不收敛的特性,因此不具备遍历性。


#### 泊松过程的定义等价性

泊松过程是一种关键随机模型,在描述独立且发生率恒定事件的时间间隔方面具有独特性质。
讲义中提出了两种不同的泊松过程定义,并通过Kolmogorov微分方程验证了这两种定义的一致性。


具体而言,通过对短时间内的行为分析导出了泊松过程的微分方程,该推导基于两个基本特性:事件的发生是独立且在短时间内发生率恒定。
这不仅证明了两种定义之间的等价关系,也加深了对泊松过程内在机制的理解。


这份随机过程讲义深入浅出地讲解了马尔可夫链和泊松过程的核心概念及其应用,并通过实例分析帮助读者理解这些模型的数学基础与实际意义,在学术研究及工业应用中都具有重要价值。
2025/9/18 21:33:05 1.41MB 讲义基础,提高,升华
1
抽象代数出版时间:2013年版丛编项:高等学校教材内容简介  《高等学校教材:抽象代数》介绍了抽象代数学中最基本的内容,共4章。
第一章介绍了等价关系、分类和代数系统等预备知识,第二章至第四章则分别介绍了群、环、域和伽罗瓦(Galois)理论等。
在每一章的末尾,还简述了一些有趣的史料和有关数学家的传记。
《高等学校教材:抽象代数》可作为高等学校数学类专业本科高年级学生及研究生的教材,也可作为相关技术人员的参考用书。
目录第一章预备知识第1节集合与映射第2节置换集合S第3节等价关系与分类第4节代数系统附录第二章群第1节群的概念和性质第2节子群第3节正规子群与商群第4节群的同态与同构第5节循环群第6节群的直积与直和第7节群在集合上的作用第8节西罗(Sylow)定理第9节有限交换群附录第三章环第1节环的概念和性质第2节无零因子环及其性质第3节理想与商环第4节环的同态与同构第5节极大理想与素理想第6节整环的分式化第7节唯一分解整环第8节多项式环第9节多项式环的因子分解附录第四章域第1节域的扩张第2节单扩张第3节有限扩张与代数扩张第4节分裂域和正规扩张第5节有限域第6节伽罗瓦基本定理第7节有限可解群第8节根式扩张与解方程第9节尺规作图附录参考文献名词索引符号索引
2023/9/21 3:26:50 42.87MB 抽象代数 王颖 南基洙 2013年
1
《10000个科学难题》序  前言  奥特(Vaught)猜想与拓扑奥特猜想  超紧基数典型内模型问题  递归可枚举度中的格嵌入问题和双量词理论可判定性问题  高层有限波雷尔(Borel)等价关系中的两个问题  极小塔问题  r=rω?及s=sω?  连续统势确定问题  奇异基数问题  萨克斯(Sacks)关于波斯特(Post)问题的度不变解问题和马丁(Martin)猜想  图灵(Turing)等价问题  图灵(Turing)度的自同构问题  是否存在一个稳定的一阶完全理论,它有大于一的有穷多个可数模型  Cherlin-zilber猜想  带指数函数的实数理论的可判定性问题  Shelalh唯一性猜想  微分封闭域上的平凡强极小集  3-Calabi-Yau代数的分类  阿廷(Artin)群的Grobner-Shirshov基  布如意(Broue)交换亏群猜想  布朗(Brown)问题  凯莱(Cayley)图和相关的问题  福克斯(Foulkes)猜想  戈伦斯坦(Gorenstein)对称猜想  卡普兰斯基(Kaplansky)第六猜想  中山(Nakayama)猜想和广义中山(Nakayama)猜想  拉姆拉斯(Ramras)问题  Smashing子范畴上的公开问题  巴斯-奎伦(Bass-Quillen)猜想  非半单Brauer代数的表示理论  非交换曲面的分类  关于码交换等价于前缀码的猜测  关于半群上一类重要同余的一个系列推广模式  关于有限码具有有限完备化的判定问题  关于正则半群的两个嵌入问题  广义倾斜模中的两个猜想  考克斯特群的胞腔  满足正规子群极小条件的可解群的Fitting子群是否是幂零的?  模代数smash积的半素性  球极函数的提升Pieri型公式  稳定等价猜想  一些代数的Grobner-Shirshov基  由导出范畴建立量子群和典范基  有限维数猜想  ABC猜测  巴斯(Bass)猜想和索尔(Soule)猜想  Lichtenbaum猜想  里德一所罗门(Reed-Solomon)码的译码问题  沙努尔(Schanuel)猜想  [1]哥德巴赫(Goldbach)猜想  关于不同模覆盖系的厄尔多斯(Erdos)问题  关于倒数和发散序列的厄尔多斯图兰(Erdos-Turan)猜想  关于奇数阶阿贝尔(Abel)群的Snevily猜想  关于有限域上代数曲线点数的Drinfeld-Vladt界  朗兰兹(Langlands)纲领  类数1实二次域的高斯猜想  黎曼(Riemann)zeta函数在奇正整数点处值的超越性  黎曼(Riemann)猜想  欧拉常数的超越性  椭圆曲线的BSD猜想  希尔伯特第九问题:高斯二次互反律如何推广  希尔伯特第十二问题:构作数域的最大阿贝尔扩域  岩泽(Iwasawa)理论的主猜想  ……  编后记
2023/8/19 14:21:04 9.17MB 科学难题,数学,猜想
1
一种基于等价关系的模糊多属性言语决策方法
2019/1/4 7:05:40 378KB 研究论文
1
运用python代码进行模糊聚类步骤如下:建立数据矩阵;
数据标准化;
建立模糊类似矩阵;
改造类似关系为等价关系;
确定分类数
2022/9/5 20:16:57 10KB 模糊聚类 python
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡