阵列信号《阵列信号处理的理论和应用》的读者对象为通信与信息系统、信号和信息处理、微波和电磁场、水声等专业高年级本科生和研究生以及相关专业技术人员。
阵列信号处理是信号处理领域的一个重要分支。
与传统的单个定向传感器相比,用传感器阵列来接收空间信号具有灵活的波束控制、高的信号增益、极强的干扰抑制能力以及高的空间分辨能力等优点,这使得阵列信号处理具有重要的军事、民事应用价值和广阔的应用前景,具体来说已涉及雷达、声纳、通信、地震勘探、射电天文以及医学诊断等多种国民经济和军事应用领域。
《阵列信号处理的理论和应用》分为12章,主要内容包括波束形成、DOA估计、相干信号的DOA估计、二维DOA估计、宽带阵列信号处理、阵列多参数估计等。
《阵列信号处理的理论和应用》在全面介绍阵列信号处理的经典理论的同时,对近来一些新算法(如PARAFAc和四元数理论)进行了讲解,同时介绍了MIMO雷达、极化敏感阵列和声矢量传感器阵列的一些应用。
处理的理论和应用(pdf+程序)
2025/12/8 0:48:54 20.21MB 阵列信号
1
本文详细介绍了在GoogleEarthEngine(GEE)中提取水体边界的方法和步骤。
首先,需要选择合适的卫星影像数据,如Landsat或Sentinel系列。
其次,通过水体指数法(如NDWI和MNDWI)增强水体信息,并设置合适的阈值提取水体。
接着,使用边缘检测算法(如Canny或Sobel)获取精确边界。
最后,进行后续处理以优化结果。
文章还提供了一个简化的GEE代码示例,展示了如何使用NDWI指数和阈值法提取水体边界。
整个过程涉及数据选择、指数计算、阈值提取、边缘检测和后续处理,通过合理调整参数和方法可获得准确的水体边界信息。
在当今世界,遥感技术与地理信息系统(GIS)在环境监测、资源管理和各种地球科学研究领域中发挥着巨大作用。
GoogleEarthEngine(GEE)作为一款强大的云平台工具,为这些研究提供了便捷的途径,尤其在水体边界提取方面,GEE提供了操作方便、计算高效的优势,使得复杂的数据处理过程变得简单快捷。
利用GEE平台获取遥感影像数据是水体边界提取的第一步。
通常,研究者倾向于选择多时相、多光谱的卫星数据,例如Landsat或Sentinel系列。
这些数据源具有较高的空间分辨率和较短的重访周期,能够满足不同时间尺度的水体变化监测需求。
获取数据后,研究者需通过一系列图像处理技术来提取水体信息。
水体指数法是遥感影像水体信息提取的常用方法,它通过特定算法计算每个像元的水体指数值,该值可以用来区分水体和非水体区域。
常用的水体指数包括归一化差异水体指数(NDWI)和改进型归一化差异水体指数(MNDWI)。
这些指数通过反映水体在近红外波段的低反射率和在绿光波段的高反射率特性,将水体和其他地物有效区分。
在实际操作中,研究者需要根据具体应用场景选择合适的水体指数,并通过实验确定最佳阈值来提取水体边界。
提取出的水体边界往往需要进一步的处理来优化结果。
边缘检测算法,如Canny或Sobel算法,能够帮助识别和提取水体的轮廓线。
这些算法通过分析影像中亮度的梯度变化来确定边界的位置,其效果受到多种因素影响,包括所选算法的特性和影像质量等。
为了确保水体边界的准确性,后续处理工作至关重要。
这包括影像预处理、滤波、平滑以及可能的目视检查等。
预处理步骤主要是为了减少噪声干扰和改善影像质量,例如进行大气校正、云和云影去除等。
滤波和平滑操作有助于消除边缘检测过程中产生的毛刺和凹凸不平。
在实际应用中,研究者还需结合实际水体的形态特征和地理知识,对提取结果进行修正和补充,以确保水体边界的准确度。
文章中提到的GEE代码示例,简化了整个提取过程,向用户展示了如何使用NDWI指数和阈值法来提取水体边界。
这不仅有助于理解整个提取过程,而且便于用户在实际工作中根据自己的数据进行相应的调整和应用。
此外,考虑到遥感数据的多源性和多样性,软件开发人员也在不断地完善和更新GEE平台的相关软件包。
这些软件包集成了各种常用的遥感影像处理功能,使得用户无需从头编写复杂的代码,就能在平台上直接进行水体边界提取等操作。
这大大降低了用户的技术门槛,提高了工作效率。
在GEE平台中,提取水体边界是一套系统的工程,它涉及到影像数据的获取、水体指数的计算、阈值的设定、边缘检测算法的应用以及后续处理的优化等多个环节。
这些环节相互关联,每个环节的精准度都直接影响着最终结果的准确度。
随着遥感技术的不断进步和GEE平台的持续优化,提取水体边界的方法将变得更加高效和精确。
2025/12/5 22:44:52 6KB 软件开发 源码
1
ETOP01全球地形高程数据是地球表面地貌特征的一种精细表示,其精度达到了每分钟1度,也就是大约1.86公里的空间分辨率。
这种数据集对于地理信息系统(GIS)、气候研究、海洋学、地质学以及环境科学等领域具有重要价值。
ETOP01是由美国国家地理信息与分析中心(NGDC)发布的,它包含了全球范围内的陆地和海洋的地形高程信息。
"etopo1_ice_g_f4.flt"文件是数据主体,通常以浮动点(float)格式存储,用于保存精确的海拔高度数据。
这种格式能够容纳较大的数值范围,并且在处理大量数据时能保持较高的计算效率。
而"etopo1_ice_g_f4.hdr"文件则是头文件,它包含了关于数据集的元信息,如坐标系统、数据类型、行列数、空间范围等,这对于正确解读和使用FLAT数据文件至关重要。
海洋部分的高程数据涵盖了全球各大洋及海盆的深度,对于海洋学研究来说,可以用于分析水深分布、海洋环流模式以及海底构造特征。
例如,通过分析这些数据,科学家可以推断海底山脉的位置、海沟的深度以及板块构造活动的痕迹。
高程数据对于大气科学研究同样重要。
在气候模型中,地形高度影响着风向、风速、温度分布以及降水模式。
高精度的地形数据可以帮助气象学家更准确地模拟和预测天气现象,比如山地风、山谷风以及风暴路径等。
此外,ETOP01数据也可应用于地理信息系统,结合其他遥感数据,可以创建高分辨率的地形图,用于城市规划、灾害评估、交通路线设计以及自然资源管理等。
在环境科学领域,它有助于理解生态系统的分布规律,比如植被类型、水资源分布以及生物多样性。
ETOP01全球地形高程数据是一个强大的资源,其详尽的1分钟分辨率使得它在多个领域都具有广泛的应用。
通过解析和利用"etopo1_ice_g_f4.flt"和"etopo1_ice_g_f4.hdr"这两个文件,科研人员和专业人士可以深入探索地球表面的复杂地形特征,从而推动各种领域的科学研究和技术进步。
2025/12/5 22:39:28 363.07MB
1
针对高光谱图像空间分辨率不足导致异常检测虚警率过高的问题,提出了一种利用主成分分析(PCA)和IHS变换融合以降低虚警率的算法。
首先对低分辨率高光谱图像进行PCA变换,提取3个主成分;
然后对这3个主成分和高分辨率图像分别进行IHS变换,得到各自的强度分量,把高光谱数据的强度分量替换成高分辨率图像的强度分量;
再运用IHS变换的可逆性,将新的强度分量与原色度分量和饱和度分量进行IHS逆变换,得到空间信息增强的高光谱图像数据;
最后使用KRX算法对空间信息增强的高光谱图像数据进行异常检测。
实验结果表明,本文算法的虚警率与KRX算法相比有很大的降低,取得了良好的检测效果。
1
我们演示了一种简单的方法,可通过光纤低相干技术来扩展可测量的光纤长度。
该方法基于置于低相干技术的一个分支中的多级光纤延迟线的级联结构。
通过在级联光纤延迟线中选择不同的单个阶段,可以在不同的测量范围内连续测量被测光纤的长度。
成功实现了0.81km的测量范围和60μm的空间分辨率。
2024/12/21 18:56:16 464KB 研究论文
1
主要介绍用ENVI如何实现地物识别,以求在此过程中更好地熟悉和理解高光谱遥感图像的处理方法和步骤。
本章选用的实验数据是一幅经过校准的AVIRIS图像,处理的结果用于地质学应用,这主要是考虑到,到目前为止地质学研究仍然是高光谱遥感的主要应用领域之一。
最后,我对一幅相比之下空间分辨率更高的用于军事的高光谱图像进行了部分改进的分析操作,以便比较分类效果。
2024/9/20 12:52:57 2.28MB ENVI 地物识别
1
到靶能量和光斑分布参数是评价高能激光系统性能指标的重要参数,为准确测量中红外高能激光系统远场能量和功率密度的时空分布,采用热吸收和光电探测相结合的测量方法,研制了可用于大面积、长脉冲中红外高能激光测量的复合式光斑探测阵列。
探测阵列由石墨热吸收单元和PbSe光电探测器阵列、信号调理放大电路、数据采集单元和信号处理单元等几部分组成,有效测量面积为22cm×22cm,光斑测量空间分辨率为2.2cm,时间分辨率为20ms,能量测量不确定度小于10%,功率密度测量不确定度小于15%。
采用该系统,可实现高能量、大面积中红外高能激光光斑参数的综合测量。
2024/8/30 19:09:14 4.48MB 探测器 中红外激 探测阵列 光电量热
1
哨兵-2A携带一枚多光谱成像仪,可覆盖13个光谱波段,幅宽达290千米。
10米空间分辨率、重访周期10天。
从可见光和近红外到短波红外,具有不同的空间分辨率,在光学数据中,哨兵-2A数据是唯一一个在红边范围含有三个波段的数据,这对监测植被健康信息非常有效。
2024/4/24 17:03:13 54KB 卫星影像 哨兵2
1
高光谱成像的应用效果非常依赖于所获取的图像信噪比(SNR)。
在高空间分辨率下,帧速率高、信噪比低,由于光谱成像包含了两维空间-光谱信息,不能使用时间延迟积分(TDI)模式解决光能量弱的问题;目前多采用摆镜降低应用要求,但增加了体积和质量,获取的图像不连续,且运动部件降低了航天的可靠性。
基于此,将超高速电子倍增与成像光谱有机结合,构建了基于电子倍增的高分辨率高光谱成像链模型,综合考虑辐射源、地物光谱反射、大气辐射传输、光学系统成像、分光元件特性、探测器光谱响应和相机噪声等各个环节,可用于成像链路信噪比的完整分析。
采用LOWTRAN7软件进行大气辐射传输计算,对不同太阳高度角和地物反射率计算像面的照度,根据电子倍增电荷耦合器件(EMCCD)探测器的噪声模型,计算出不同工作条件下的SNR。
对SNR的分析和实验,选择适当的电子倍增增益,可使微弱光谱信号SNR提高6倍。
2024/2/10 13:49:08 10.84MB 探测器 高光谱成 信噪比 电子倍增
1
全能电子地图软件破解版,免费高清下载谷歌影像,空间分辨率可达1m。
2023/11/11 22:04:29 15.45MB 软件
1
共 25 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡