编写applet程序。
其中包含一个滚动的字符串,字符串从左向右移动,当所有的字符都从屏幕的右边消失后,字符串重新从左边出现并继续向右移动。
2026/1/12 15:26:30 602B 滚动的字符串
1
###Raptor编程简介####一、Raptor编程概述Raptor是一种基于流程图的可视化编程工具,旨在帮助用户直观地理解和实现编程概念。
Raptor通过图形化界面简化了编程学习过程,使得初学者能够轻松掌握算法设计和编程的基础。
####二、Raptor的特点1.**语法简化**:Raptor开发环境减少了对语法的要求,使得用户能够更加专注于程序逻辑而非语法细节。
2.**可视化编程**:Raptor程序以图形化的方式展现,每个图形符号代表一种编程指令,通过这些符号之间的连接来展示指令执行的顺序。
3.**易于理解的错误提示**:相较于其他编程语言,Raptor提供了更为友好的错误提示信息,有助于初学者快速定位并解决问题。
4.**无需高级编程语言**:使用Raptor可以避免使用如C++或Java等高级编程语言,降低了学习门槛。
####三、Raptor程序结构Raptor程序由一系列相连的符号组成,这些符号指示了程序的执行步骤。
符号间的连接线定义了执行顺序。
一个最简单的Raptor程序包括“开始”和“结束”符号,中间可以通过插入其他符号来构建实际的功能。
####四、Raptor的基本符号及其用途Raptor提供了六种基本符号,每种符号对应不同的编程功能:1.**赋值(Assignment)**:用于给变量分配值。
2.**调用(Call)**:执行预先定义的过程或函数。
3.**输入(Input)**:接收用户的输入数据,并将其存储在变量中。
4.**输出(Output)**:显示变量的值或将数据输出到文件。
5.**选择(Selection)**:根据条件判断执行不同的代码块。
6.**循环(Loop)**:重复执行一段代码直到满足特定条件为止。
####五、典型计算机程序的三个基本组成部分1.**输入(Input)**:获取程序运行所需的初始数据。
2.**加工(Process)**:执行数据处理任务。
3.**输出(Output)**:展示处理后的结果。
这些组成部分与Raptor的基本指令紧密相关,例如使用输入语句接收数据,使用赋值语句进行数据处理,最后通过输出语句展示结果。
####六、变量的概念变量是指在程序中用来存储数据值的一种标识符。
它们在程序的不同阶段可以被赋值,这意味着同一个变量可以在程序的不同部分存储不同的值。
变量的创建通常发生在首次使用的语句中,且其值可以通过三种方式更新:-**输入语句**:接收用户的输入并存储在变量中。
-**赋值语句**:通过计算表达式的结果来更新变量的值。
-**过程调用**:通过执行过程并返回结果来更新变量的值。
####七、变量命名规则良好的变量命名习惯对于提高代码的可读性和维护性至关重要。
以下是关于变量命名的一些规则:-变量名应具有描述性,反映变量所存储数据的意义。
-变量名必须以字母开头,可以包含字母、数字和下划线。
-多词变量名建议使用下划线分隔。
####八、总结通过本文的介绍,我们了解到Raptor是一种适合初学者的可视化编程工具,它通过图形化界面简化了编程学习过程。
Raptor的核心特点包括语法简化、可视化编程、易于理解的错误提示以及无需使用复杂的编程语言。
Raptor程序由一系列符号组成,这些符号代表了程序的各种操作。
此外,本文还详细介绍了变量的概念以及良好的变量命名习惯的重要性。
通过学习Raptor,初学者可以更快地掌握编程的基础知识,并为进一步学习更高级的编程语言打下坚实的基础。
2026/1/12 15:54:15 2.73MB
1
年会抽奖小程序,可自定义背景,抽奖形式,设置奖品等
2026/1/12 12:15:31 17.96MB quartz
1
航模遥控器S.BUS协议的采集完整程序。
主控采用STM32F103ZET6,本程序已在futaba的航模遥控器和乐迪T8FB遥控器上连接应用。
完美运行。
2026/1/12 11:13:49 5.82MB SBUS 航模遥控 STM32
1
SBUS串口中断接收与转换的代码,SBUS数据帧转成数值的规律。
数值转实际脉宽的拟合。
2026/1/12 10:52:57 12KB SBUS数值转换 SBUS接收程序 STM32
1
STM32是一款基于ARMCortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产,广泛应用于各种嵌入式系统设计,包括飞行控制系统、机器人、物联网设备等。
在本项目“S.BUSSTM32解析程序”中,我们将讨论如何利用STM32处理器解析FUTABA的S.BUS通信协议,并实现PWM波输出。
S.BUS是FUTABA公司推出的一种用于遥控模型系统的多通道双向数字通信协议。
相比于传统的PPM(PulsePositionModulation)信号,S.BUS提供了更高的数据传输速率、更稳定的信号质量以及更好的抗干扰能力。
它能支持最多18个通道的数据传输,同时还能提供故障检测功能,增强了系统的可靠性和安全性。
在STM32中解析S.BUS协议,首先需要理解S.BUS协议帧的结构。
一个完整的S.BUS帧通常包含起始位、16个通道数据、奇偶校验位和结束位。
每个通道数据以11位的二进制格式表示,其中前10位用于编码通道值,第11位为通道标志位。
STM32需要通过串行接口(如USART或SPI)接收这些连续的数字信号,并进行解码处理。
解析过程通常分为以下步骤:1.接收数据:STM32的串行接口配置为接收模式,监听S.BUS信号线上的数据。
可以使用中断服务程序来捕获每个数据位的到来。
2.检测起始位:S.BUS帧的起始位是一个低电平,STM32需要识别这个特定的信号边缘,作为帧开始的标志。
3.解码通道数据:接着,STM32逐位读取并解码16个通道的11位数据,将它们转换成对应的模拟控制值。
每个通道的值范围通常是1000到2000,代表伺服电机或马达的最小到最大角度或速度。
4.计算奇偶校验:S.BUS协议还包括一个奇偶校验位,用于检查数据传输的正确性。
STM32需要计算接收到的所有数据位的奇偶性,并与接收到的校验位进行比较。
5.检测结束位:S.BUS帧以高电平的结束位结束。
当检测到该高电平时,STM32知道一帧数据已经完整接收。
6.错误处理:如果在接收过程中发现错误,如奇偶校验不匹配或数据帧格式错误,STM32可能需要采取重传策略或忽略错误帧。
7.PWM波输出:解析完S.BUS数据后,STM32会根据每个通道的值生成相应的PWM波。
这通常通过定时器和比较单元实现,通过设置定时器的预装载值和比较值来调整PWM脉冲的宽度,从而控制输出的电压或电流。
在实际应用中,FUTABASUBS成功版本的代码可能包含了一些关键函数,如`sbus_init()`用于初始化串口和相关寄存器,`sbus_decode()`用于解码接收到的S.BUS数据,以及`pwm_generate()`用于生成PWM波。
这些函数的实现细节将直接影响到整个系统的性能和稳定性。
"S.BUSSTM32解析程序"项目涉及到STM32微控制器的串行通信、数据解析、错误处理以及PWM生成等多个关键知识点,对于理解和开发遥控模型系统具有重要的实践意义。
通过深入学习和实践,开发者可以掌握高级遥控系统的设计技术。
2026/1/12 9:22:41 2.72MB S.BUS SBUS
1
作为三维装箱问题的一种工程应用,集装箱装载问题(ContainerLoadingProblem,CLP)通常是指如何将一些小尺寸货物按照某种方式装入集装箱中。
集装箱装载质量的好坏,直接影响着企业运输成本的高低。
如何给出一个合理的布局及装载方案,以保证装运的稳定性(防止运输中货物的移动而导致货物损坏)、多目的地运送、负重限制、箱体内的重量分布、装箱的效率等问题的基础上,使集装箱的空间利用率或载重利用率达到最大,是这类问题的主要目标。
2026/1/12 6:50:09 36KB Matlab
1
STM32的OLED显示程序,亲测可用。
内有详细注释和说明文档,很好的参考资料。
2026/1/12 5:05:57 68KB OLED
1
用C语言开发的学生成绩管理系统,是用C语言开发的dos界面的控制台程序
2026/1/11 22:49:41 6MB C语言
1
针对超混沌系统设计滑模自适应控制器,利用matlab进行仿真验证。
2026/1/11 20:09:31 448KB 超混沌 自适应 滑模 同步
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡