针对短文本的特征稀疏性和上下文依赖性两个问题,提出一种基于隐含狄列克雷分配模型的短文本分类方法。
利用模型生成的主题,一方面区分相同词的上下,降低权重;另一方面关联不同词以减少稀疏性,增加权重。
2025/1/17 8:38:18 831KB LDA
1
基于i向量的说话人验证的稀疏性分析和补偿
2025/1/2 0:31:35 245KB 研究论文
1
SLAM技术是目前机器人、自动驾驶、增强现实等领域的关键技术之一,是智能移动平台感知周围环境的基础技术。
本文介绍了基于视觉传感器(单目、双目、RGB-D等相机)的SLAM技术的原理和研究现状,包括基于稀疏特征的SLAM、稠密/半稠密SLAM、语义SLAM和基于深度学习的SLAM。
然而,现有的系统与方法鲁棒性并不高,随着人工智能技术的发展,深度学习与传统的基于几何模型的方法相结合的趋势正在形成,这将推动视觉SLAM技术朝着长时间大范围实时语义应用的方向前进。
视觉SLAM算法的现状1、基于稀疏性特征的SLAM2、稠密SLAM和半稠密SLAM3、语义SLAM4、基于深度学习的SLAM
2024/11/13 18:25:29 23.44MB 计算机视觉 SLAM
1
深度学习不断增长的能源耗费和性能成本,促使社区通过选择性修剪组件来减少神经网络的规模。
与生物学上的相似之处是,稀疏网络即使不能比原来的密集网络更好,也能得到同样好的推广。
2024/11/12 22:47:52 4.36MB 稀疏性 深度学习
1
针对中文短文本篇幅较短、特征稀疏性等特征,提出了一种基于隐含狄利克雷分布模型的特征扩展的短文本分类方法。
在短文本原始特征的基础上,利用LDA主题模型对短文本进行预测,得到对应的主题分布,把主题中的词作为短文本的部分特征,并扩充到原短文本的特征中去,最后利用SVM分类方法进行短文本的分类。
实验表明,该方法在性能上与传统的直接使用VSM模型来表示短文本特征的方法相比,对不同类别的短文本进行分类,都有不同程度的提高与改进,对于短文本进行补充LDA特征信息的方法是切实可行的。
2024/7/6 6:33:32 1.14MB LDA 短文本分类
1
收到一些国内外朋友的来信,咨询关于容积卡尔曼滤波的问题(CKF),大家比较疑惑的应该就是generator或G-orbit的概念。
考虑到工作以后,重心必然转移,不可能再像现在这样详细的回答所有人的问题,更不可能再帮大家改论文、写(或改)代码了,请各位谅解!在此,上传一个CKF和五阶CKF用于目标跟踪的示例代码,代码中包含详细的注释,希望对大家以后的学习和研究有所帮助!此代码利用C++对五阶CKF的第二G-轨迹进行了封装(Perms.exe),能理解最好,如果无法理解,也无须深究其具体构造方法!可执行文件底层是用字符串+递归算法实现的,理论上可以应用于任意维模型。
但考虑到递归算法可能存在的栈溢出,重复压栈出栈带来的时间消耗等问题,我们利用矩阵的稀疏性和群的完全对称性,并通过分次调用,来尽可能减少栈的深度,提高计算速度。
容积点一次生成后,可以一直使用,通过对50维G-轨迹的生成速度(CoreT6600@2.2GHz)进行测试,包含数据读写在内的速度约为1.5秒,速度尚可。
而目前为止,本人尚未遇到达到甚至超过50维的系统,因此,暂时不作算法层面的优化。
注意:Perms.exe可以用于任意维模型,将可执行文件复制至工作目录下,调用时选择N/n,并输入你的模型维数,即可生成所需的第二G-轨迹。
如果无法理解相关的概念,请参考示例代码,并记住如何使用即可~~~相关理论基础及所用模型,请参考以下文献:References(youmayciteoneofthearticlesinyourpaper):[1]X.C.Zhang,C.J.Guo,"CubatureKalmanfilters:Derivationandextension,"ChinsesPhysicsB,vol.22,no.12,128401,DOI:10.1088/1674-1056/22/12/128401[2]X.C.Zhang,Y.L.Teng,"AnewderivationofthecubatureKalmanfilters,"AsianJournalofControl,DOI:10.1002/asjc.926[3]X.C.Zhang,"Cubatureinformationfiltersusinghigh-degreeandembeddedcubaturerules,"Circuits,Systems,andSignalProcessing,vol.33,no.6,pp.1799-1818,DOI:10.1007/s00034-013-9730-0
2024/5/26 2:39:13 239KB CKF 五阶CKF 目标跟踪
1
在异构信息网络下往往会产生纷繁复杂的数据,这些数据常用一种被称为张量的新的形式来表示。
但是由于这些数据中缺失值较多,存在一定的稀疏性,因此需要对张量进行分解,恢复缺失值,找出多元数据之间潜在的关系。
张量分解是推荐系统中一种重要的方法,在推荐系统中应用张量分解,可以挖掘出潜在关系,给用户带来更好的推荐体验。
笔者以数据挖掘为引,研究了张量分解及其在推荐系统中的应用,并根据当下的研究热点问题提出了未来张量分解在推荐领域的应用方向和发展趋势。
2024/3/13 10:14:54 976KB 张量分解 推荐系统
1
针对短文本特征稀疏、噪声大等特点,提出一种基于LDA高频词扩展的方法,通过抽取每个类别的高频词作为向量空间模型的特征空间,用TF-IDF方法将短文本表示成向量,再利用LDA得到每个文本的隐主题特征,将概率大于某一阈值的隐主题对应的高频词扩展到文本中,以降低短文本的噪声和稀疏性影响。
实验证明,这种方法的分类性能高于常规分类方法
2023/12/20 19:27:30 624KB LDA 短文本分类
1
本文在图像稀疏性先验的基础上#引入局部AC模型和非局部自相似性作为图像额外的先验信息#提出了非局部正则化的[+图像重建模型#并给出了相应的数值求解算法$
2023/10/26 17:15:56 1.41MB 非局部均值
1
梯度稀疏性先验图像matting算法
2023/9/12 9:11:15 948KB 研究论文
1
共 14 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡