神经网络预测,模糊神经网络的预测算法-嘉陵江水质评价
2025/5/4 20:43:03 14KB matlab
1
为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。
使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;
利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。
仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%
2025/3/2 11:19:56 327KB 粒子滤波 RBF
1
基于BP神经网络,测试集辛烷值含量预测结果对比
2025/2/24 22:18:36 169KB BP神经网络
1
本程序根据训练好的网络文件ANN.mat预测新的数据文件,得到均方误差,并画出预测数据和原数据的对比图。
2024/12/31 8:14:24 2KB BP神经网络
1
Elman神经网络预测,可以直接改数据进行预测,方便实用,自己可以调细节增大预测精度
2024/9/29 14:28:52 3KB Elman
1
神经网络在处理非线性问题方面有着别的方法无法比拟的优势,而预测控制对于具有约束的卡边操作问题具有非常好的针对性,因此将神经网络与预测控制相结合,发挥各自的优势,对非线性、时变、强约束、大滞后工业过程的控制提供了一个很好的解决方法。
2024/9/19 8:35:36 2KB Ann Matlab
1
公路运量主要包括公路客运量和公路货运量两方面。
某个地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,已知该地区20年(1990-2009)的公路运量相关数据如下:样本数据较多,且已知影响数据的因素(三大因素:该地区的人数、机动车数量和公路面积),可考虑将其作为BP神经网络的训练集,对该神经网络进行训练,然后对训练好的神经网络进行测试,最后使用测试合格的神经网络进行预测工作。
2024/7/19 14:23:47 6KB bp神经网络
1
Kong流网PoreFlow-Net的实现:一个3D卷积神经网络,预测通过多Kong介质的流体流量使用说明从下载所需的数据(或通过首选的模拟方法创建自己的数据)使用train.py脚本训练模型模型架构这是我们的网络的样子:方法先决条件为了训练/测试我们使用的Tensorflow1.12模型,应该可以使用更新的版本其余的必要软件包应通过pip获得数据完整的出版物和所有培训/测试数据可在找到。
excel文件随可用样本列表一起提供。
有待改进keras调谐器可用于优化每个编码分支上的过滤器数量协同合作我们欢迎合作引文如果您将我们的代码用于自己的研究,请引用我们的出版物,我们将不胜感激@article{PFN2020,title="PoreFlow-Net:a3Dconvolutionalneuralnetworktopredictfluidflowthroughporousmedia",journal="AdvancesinWaterResources",pages="103539",year=
2024/7/12 8:41:11 19.65MB machine-learning tensorflow gpu keras
1
一篇高水平IEEETrans的模糊逻辑+神经网络预测模型,作者英文水平很好,看完后能对模糊逻辑有更高的理解!
2024/5/31 3:55:58 1.77MB 模糊逻辑 预测 IEEE
1
含NWP数值天气预报和不含NWP数值天气预报的BP神经网络预测风电功率两种方法进行比较,含数据,实际案例。
2024/5/29 6:01:25 17KB 风电功率 NWP BP神经网络
1
共 48 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡