Elman神经网络预测,可以直接改数据进行预测,方便实用,自己可以调细节增大预测精度
2024/9/29 14:28:52 3KB Elman
1
神经网络在处理非线性问题方面有着别的方法无法比拟的优势,而预测控制对于具有约束的卡边操作问题具有非常好的针对性,因此将神经网络与预测控制相结合,发挥各自的优势,对非线性、时变、强约束、大滞后工业过程的控制提供了一个很好的解决方法。
2024/9/19 8:35:36 2KB Ann Matlab
1
公路运量主要包括公路客运量和公路货运量两方面。
某个地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,已知该地区20年(1990-2009)的公路运量相关数据如下:样本数据较多,且已知影响数据的因素(三大因素:该地区的人数、机动车数量和公路面积),可考虑将其作为BP神经网络的训练集,对该神经网络进行训练,然后对训练好的神经网络进行测试,最后使用测试合格的神经网络进行预测工作。
2024/7/19 14:23:47 6KB bp神经网络
1
Kong流网PoreFlow-Net的实现:一个3D卷积神经网络,预测通过多Kong介质的流体流量使用说明从下载所需的数据(或通过首选的模拟方法创建自己的数据)使用train.py脚本训练模型模型架构这是我们的网络的样子:方法先决条件为了训练/测试我们使用的Tensorflow1.12模型,应该可以使用更新的版本其余的必要软件包应通过pip获得数据完整的出版物和所有培训/测试数据可在找到。
excel文件随可用样本列表一起提供。
有待改进keras调谐器可用于优化每个编码分支上的过滤器数量协同合作我们欢迎合作引文如果您将我们的代码用于自己的研究,请引用我们的出版物,我们将不胜感激@article{PFN2020,title="PoreFlow-Net:a3Dconvolutionalneuralnetworktopredictfluidflowthroughporousmedia",journal="AdvancesinWaterResources",pages="103539",year=
2024/7/12 8:41:11 19.65MB machine-learning tensorflow gpu keras
1
一篇高水平IEEETrans的模糊逻辑+神经网络预测模型,作者英文水平很好,看完后能对模糊逻辑有更高的理解!
2024/5/31 3:55:58 1.77MB 模糊逻辑 预测 IEEE
1
含NWP数值天气预报和不含NWP数值天气预报的BP神经网络预测风电功率两种方法进行比较,含数据,实际案例。
2024/5/29 6:01:25 17KB 风电功率 NWP BP神经网络
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
用matlab编BP神经网络预测程序,遗传算法优化BP神经网络在数据预测方面的应用
2024/5/3 20:31:07 2KB 遗传优化bp
1
由已知的原始数据进行预测未来数据亲测有效,个人在做这方面的课题
2024/3/19 14:12:05 7KB BP神经网络
1
基于BP神经网络,测试集辛烷值含量预测结果对比
2024/3/11 5:05:06 169KB BP神经网络
1
共 44 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡