【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。
它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。
然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。
【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。
在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。
主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。
【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。
它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。
在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。
【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。
通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。
预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。
MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。
【风力发电预测】RBF神经网络同样适用于风力发电量的预测。
通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。
总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。
通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。
此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
1
神经网络模型能够从音频演讲中检测出五种不同的男/女情绪(DeepLearning,NLP,Python)
2025/3/22 8:41:24 4.9MB Python开发-机器学习
1
本问主要以预测秦皇岛煤炭价格为目标,通过问题一中不同因素对其影响权重的大小以及神经网络算法,建立价格预测模型。
BP神经网络模型处理信息的基本原理是:输入信号,通过中间节点(隐层点)作用于输出节点,经过非线性变换,产生输出信号,网络训练的每个样本包括输入向量和期望输出量t,网络输出值y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的连接强度值和隐层节点与输出节点之间的连接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。
此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
1
深度学习(DeepLearning)是近年来提出的一种利用具有多个隐层的深度神经网络(DeepNeuralNetwork,DNN)完成学习任务的机器学习方法。
其实质是,通过构建具有多个隐层的神经网络模型并使用大量的训练数据来学习得到更有用的特征,进而提升模型预测或分类的准确性。
与以往的浅层神经网络的不同之处在于,深度学习主要强调了神经网络的深度(通常有大于1层的隐层),还突出了特征学习的重要性,从大数据中学习特征,这些特性可以刻画数据丰富的内在信息。
2025/1/19 7:51:09 10.13MB 深度学习 图像识别
1
研究了离焦量、脉冲能量、扫描间距、扫描速度和重复频率等激光加工参数对金属表面着色及微纳结构制备的影响机理,诱导制备了氧化膜、类光栅、凹坑和柱状突起4种结构,这些结构会使不锈钢表面产生薄膜干涉、光栅衍射和陷光等现象。
通过Matlab软件在工艺参数与颜色HSB值之间建立了一个单隐含层的反向传播(BP)神经网络,该神经网络的训练均方根误差为0.0078,色相H、饱和度S和亮度B的测试相对误差分别为23%,10.4%和5.6%。
该神经网络在一定程度上揭示了工艺参数与颜色之间的映射关系,使用该神经网络模型可以对激光着色效果作出有效的预测。
2025/1/10 14:27:45 13.14MB 激光技术 微纳结构 BP神经网 不锈钢
1
南阳陶岔作为南水北调中线工程的渠首闸所在地,掌握其水质变化情况、预防污染事件的发生至关重要。
基于环保部门的水质检测数据,选取pH、溶解氧、高锰酸盐指数、氨氮作为研究指标,通过主成份加权分析模型和BP神经网络模型,对陶岔的水质进行了有效的评价和较高精度的预测。
结果表明,陶岔水质总体较好,可达II级以上,评价准确率为81.25%;
预测的最大误差为4.75%,平均误差0.7%,预测精度较高。
1
使用BP算法的神经网络手写体数字识别,使用Python语言编写,包含四个文件:训练模块,测试模块,图像显示模块还有一个最简单的神经网络模型。
希望对大家有帮助。
(更改了上一版的一点注释错误)
2024/9/24 22:07:17 3KB Python 神经网络 BP算法
1
风电场风速预测的RBF神经网络模型,介绍了风电场风速预测的方法,建立了RBF神经网络模型,提前1h预测,并把结果与BP方法进行对比
2024/8/31 14:46:32 217KB 风速 预测
1
完整的PDF版 第1章绪论  1.1从生物神经网络到人工神经网络  1.2人工神经网络的发展史  1.3人工神经网络的应用  1.4生物神经元  1.5人工神经元模型  1.6神经网络的结构  1.7神经网络的特点  1.8神经网络的学习方式  第2章MATLAB神经网络工具箱中的神经网络模型  2.1MATLAB工具箱的神经元模型  2.2MATLAB工具箱中的神经网络结构  2.3MATLAB神经网络工具箱中的网络对象及其属性  2.3.1网络对象属性  2.3.2子对象属性  第3章感知器  3.1感知器神经元及感知器神经网络模型  3.2感知器的学习  3.3感知器的局限性  3.4单层感知器神经网络的MATLAB仿真程序设计  3.5多层感知器神经网络及其MATLAB仿真  3.6感知器应用于线性分类问题的进一步讨论  第4章线性神经网络  4.1线性神经网络模型  4.2线性神经网络的学习  4.3线性神经网络的MATLAB仿真程序设计  4.3.1线性神经网络设计的基本方法  4.3.2线性神经网络的设计例程  第5章BP网络  5.1BP神经元及BP网络模型  5.2BP网络的学习  5.2.1BP网络学习算法  5.2.2BP网络学习算法的比较  5.3BP网络泛化能力的提高  5.4BP网络的局限性  5.5BP网络的MATLAB仿真程序设计  5.5.1BP网络设计的基本方法  5.5.2BP网络应用实例  第6章径向基网络  6.1径向基网络模型  6.2径向基网络的创建与学习过程  6.3其他径向基神经网络  6.4径向基网络的MATLAB仿真程序设计  第7章竞争型神经网络  7.1竞争型神经网络模型  7.2竞争型神经网络的学习  7.3竞争型神经网络存在的问题  7.4竞争型神经网络的MATLAB仿真程序设计  第8章自组织神经网络  8.1自组织特征映射神经网络模型  8.2自组织特征映射神经网络的学习  8.3学习向量量化神经网络模型  8.4学习向量量化神经网络的学习  8.5LVQ1学习算法的改进  8.6LVQ神经网络的MATLAB仿真程序设计  第9章反馈型神经网络  9.1Elman神经网络  9.2Hopfield神经网络  9.3反馈神经网络的MATLAB仿真程序设计  第10章图形用户界面  10.1图形用户界面简介  10.2图形用户界面应用示例  10.3图形用户界面的其他操作  第11章Simulink  11.1Simulink神经网络仿真模型库简介  11.2Simulink应用示例  第12章自定义网络  12.1自定义神经网络  12.1.1自定义神经网络的创建  12.1.2自定义神经网络的初始化、训练与仿真  12.2自定义函数  附录A神经网络工具箱函数  参考文献
1
乳腺癌病理图像的自动分类具有重要的临床应用价值。
基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。
为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。
实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性
2024/8/3 5:11:41 632KB 深度学习 图像识别
1
共 49 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡