本文主要回顾了石墨烯量子点的制备以及基于石墨烯量子点自旋和电荷量子比特操作的研究进展,由于石墨烯材料相对较轻的原子重量使其具有较小的自旋轨道相互作用,另外含有核自旋的碳同位素13C在自然界中的含量大约只占1%,这使得超精细相互作用(即核自旋和电子自旋相互作用)较弱,所以石墨烯比其他材料具有较长的自旋退相干时间,在量子计算和量子信息中有非常好的应用前景.本文计算了5种静电约束制备的石墨烯量子点:1)扶手型单层石墨烯纳米条带,2)单层石墨烯圆盘,3)双层石墨烯圆盘,4)ABC堆积型三层石墨烯圆盘,5)ABA堆积型三层石墨烯圆盘.石墨烯量子点中自旋比特应用的关键是破坏谷简并,在1)中,主要是利用边界条件破坏谷简并,而2)3)4)和5)中是利用外磁场破坏谷简并.文章进一步介绍了自旋轨道相互作用和超精细相互作用对石墨烯量子点中自旋操作的影响.
1
单个银纳米八面体附近石墨烯量子点的调制光致发光
2023/9/15 17:53:09 2.47MB 研究论文
1
基于石墨烯-量子点混合的宽光谱呼应场效应光电晶体管
2020/3/14 9:03:41 463KB Decay time; Field effects;
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡