在这次演讲中,我将介绍我们在学习知识图推理逻辑规则方面的最新进展。
逻辑规则在用于预测和推广到其他任务时提供了可解释,因此是学习的关键。
现有的方法要么面临在大搜索空间中搜索的问题(如神经逻辑编程),要么由于稀疏奖励而无效优化(如基于强化学习的技术)。
为了解决这些局限性,本文提出了一个称为RNNLogic的概率模型。
2024/3/22 5:45:08 2.24MB 知识图谱推理 逻辑规则
1
知识图谱推理方向的基础算法PathRankingAlgorithm详解
2023/8/5 4:09:43 964KB 知识图谱推理
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡