基于IDL语言编写的数据分析程序,主要用于时间序列变化趋势分析
2025/6/28 20:54:40 3KB Mann_Kendall IDL程序实现
1
目录第1章 HTML5简介11.1 HTML历史与HTML521.2 HTML5的优势61.3 HTML5的基本结构和语法变化81.4 本章小结12第2章 HTML5的常用元素与属性142.1 HTML5保留的常用元素152.2 HTML5增强的iframe元素342.3 HTML5保留的通用属性402.4 HTML5新增的通用属性442.5 HTML5新增的结构元素482.6 HTML5新增的语义元素552.7 HTML5头部和元信息592.8 HTML5新增的拖放API632.9 本章小结71第3章 HTML5表单相关的元素和属性723.1 HTML原有的表单及表单控件733.2 HTML5新增的表单属性833.3 HTML5新增的表单元素903.4 HTML5新增的客户端校验963.5 本章小结100第4章 HTML5的绘图支持1014.1 使用canvas元素1024.2 绘图1034.3 坐标变换1184.4 控制叠加风格1234.5 控制填充风格1244.6 位图处理1284.7 输出位图1324.8 动画制作1334.9 本章小结136第5章 HTML5的多媒体支持1375.1 使用audio和video元素1385.2 使用JavaScript脚本控制媒体播放1415.3 事件监听1445.4 track元素1465.5 本章小结149第6章 级联样式单与CSS选择器1506.1 样式单概述1516.2 CSS样式单的基本使用1526.3 CSS选择器1586.4 伪元素选择器1676.5 CSS3新增的伪类选择器1766.6 在脚本中修改显示样式1956.7 本章小结197第7章 字体与文本相关属性1987.1 字体相关属性1997.2 CSS3支持的颜色表示方法2057.3 文本相关属性2067.4 CSS3新增的服务器字体2127.5 本章小结215第8章 背景、边框和边距相关属性2168.1 盒模型简介2178.2 背景相关属性2178.3 使用渐变背景2268.4 边框相关属性2398.5 使用opacity控制透明度2468.6 padding和margin相关属性2478.7 本章小结249第9章 大小、定位、轮廓相关属性2509.1 width、height相关属性2519.2 定位相关属性2559.3 轮廓相关属性2579.4 用户界面和滤镜属性2589.5 本章小结263第10章 盒模型与布局相关属性26410.1 盒模型和display属性26510.2 对盒添加阴影27510.3 布局相关属性27810.4 CSS3新增的多栏布局28510.5 使用弹性盒布局28910.6 本章小结306第11章 表格、列表相关属性及mediaquery30711.1 表格相关属性30811.2 列表相关属性31311.3 控制光标的属性31611.4 mediaquery和响应式布局31711.5 本章小结323第12章 变形与动画相关属性32412.1 CSS3提供的变形支持32512.2 CSS3新增的3D变换33712.3 CSS3提供的Transition动画34112.4 CSS3提供的Animation动画34512.5 本章小结349第13章 JavaScript语法详解35013.1 JavaScript简介35113.2 数据类型和变量35613.3 基本数据类型36413.4 复合类型37613.5 运算符38113.6 语句39113.7 流程控制39513.8 函数40313.9 函数的参数处理42513.10 面向对象42913.11 创建对象43713.12 本章小结443第14章 DOM编程详解44414.1 DOM模型概述44514.2 DOM模型和HTML文档44614.3 访问HTML元素44814.4 修改HTML元素45614.5 增加HTML元素45814.6 删除HTML元素46314.7 传统的DHTML模型46714.8 使用window对象46914.9 navigator和地理定位47914.10 HTML5增强的HistoryAPI48514.11 使用do
2025/6/28 17:23:46 132.38MB web
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
《Signaltap使用手册》深度解析与应用指南在当今高速发展的电子设计自动化(EDA)领域,Altera公司推出的SignalTapII逻辑分析器为工程师们提供了一种强大的调试工具,帮助他们在无需额外I/O引脚的情况下,实时监测FPGA内部信号的状态。
本文将基于《Signaltap使用手册》的核心内容,深入探讨SignalTapII的功能特性、工作原理及其在设计流程中的应用策略。
###设计调试利器:SignalTapII逻辑分析器SignalTapII是Altera为其QuartusII软件包量身定制的一款功能强大的逻辑分析工具。
它能够捕捉并存储FPGA内部节点或I/O引脚状态的数据,无需外部设备介入或修改设计文件,即可实现对内部信号状态的精准监测。
这种非侵入式的监测方式极大地提高了设计调试的效率与准确性。
###设计流程概览####设计流使用SignalTapII逻辑分析器SignalTapII的设计流主要包括配置分析器、定义触发条件、编译设计、编程FPGA以及读取和分析数据等步骤。
整个过程紧密相连,旨在确保用户能够顺利地从设计阶段过渡到调试阶段,最终获取到有价值的信号数据。
####SignalTapII逻辑分析器任务流在具体操作层面,SignalTapII的任务流涵盖了信号选择、触发条件设置、采样率调整、数据存储及数据分析等环节。
用户可以通过QuartusII界面直观地进行这些操作,使得信号分析工作变得更加高效且便捷。
###配置SignalTapII逻辑分析器配置SignalTapII时,首先需要确定所需监控的信号列表,接着设置相应的触发条件,最后根据设计需求调整采样率。
这一系列操作均需在QuartusII环境中完成,确保了设计的一致性和完整性。
###定义触发条件触发条件是SignalTapII逻辑分析的关键环节之一。
通过定义特定的信号组合或事件,可以精准捕获感兴趣的信号状态变化。
这不仅有助于提高数据采集的针对性,同时也为后续的问题定位提供了有力支持。
###编译设计在完成了SignalTapII的配置后,接下来便是将设计进行编译。
这一过程会将所有的配置信息嵌入到FPGA的设计文件中,确保在硬件运行时能够正确地执行信号捕捉任务。
###总结SignalTapII逻辑分析器作为AlteraQuartusII软件的重要组成部分,其在设计调试方面的贡献不容小觑。
通过提供一套完整的工作流程,它不仅简化了FPGA内部信号的监测过程,还大幅提升了问题诊断的效率。
对于从事FPGA设计与开发的工程师而言,熟练掌握SignalTapII的使用方法,无疑将大大增强其在项目实施中的竞争力。
以上仅为《Signaltap使用手册》部分内容的概述,更多详细的操作指导与案例分析,请参考官方文档或相关技术论坛,以获得更加全面和深入的理解。
2025/6/26 22:19:44 1.19MB signaltap
1
基于C/S结构的求职网系统管理:用户注册、注销、登陆、修改密码。
其中用户分为求职用户与企业用户。
档案管理:用户档案的建立、修改、保存、查询;
信息查询:用户可根据专业、工作经验、薪金等属性进行模糊查询;
信息互动:用户开通相关服务后,可自动收到相关求职/招聘信息,从而减少用户搜索负担。
行业动态:根据行业需求/变化,自动生成分析报告,从而为就业提供一定指导。
求职论坛:为用户提供一个网上交流论坛。
具体看我的博客https://blog.csdn.net/m0_37655297/article/details/80097968
2025/6/26 12:28:47 9.67MB C/S结构 求职网
1
使用smart-upload.jar上传后台后到中文值出现乱码,使用过滤器及设置转码也没效果,页面设置为GBK,GB2312提交后台中文显示正常,参考以下资料总结如下:使用jspsmart.jar要修改代码:由于各版本不同,修改也有所变化
2025/6/26 12:33:51 14KB jspsmartupload 乱码 UTF8 smartupload
1
由剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化.该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大.
2025/6/23 13:17:18 5.94MB 人脸识别
1
在雷达技术领域,MTD(MovingTargetDetection,动目标检测)算法是至关重要的一个部分,它主要用于识别在复杂背景中的移动目标。
脉冲压缩和MTD处理是雷达系统中的核心概念,它们对于提高雷达的探测性能,特别是距离分辨率和信噪比具有决定性作用。
下面我们将详细探讨这些知识点。
脉冲压缩是现代雷达系统中的一种信号处理技术。
在发射阶段,雷达发送的是宽脉冲,以获得足够的能量来覆盖远距离的目标。
然而,这样的宽脉冲会降低雷达的分辨能力。
通过使用匹配滤波器或者自相关函数,在接收端对回波信号进行处理,可以将宽脉冲转换为窄脉冲,从而显著提高距离分辨率。
脉冲压缩技术的关键在于设计合适的脉冲编码序列,例如线性调频(LFM)信号,它可以实现高时间和频率分辨率的兼顾。
接着,我们来讨论MTD算法。
MTD的目标是区分固定背景与移动目标,尤其是在复杂的雷达回波环境中。
在常规的雷达系统中,背景噪声和固定物体的回波可能会淹没微弱的移动目标信号。
MTD算法通过分析连续的雷达扫描数据,识别出在不同时间点位置有所变化的目标。
常见的MTD方法有基于数据立方体的处理、差分动目标显示(Doppler-basedMTD)以及利用多普勒频移的动目标增强技术等。
在雷达目标检测方面,MTD与脉冲压缩相结合,能够进一步提升检测效果。
例如,通过脉冲压缩提高距离分辨率,使得雷达可以更精确地定位目标;
而MTD则能帮助区分动态和静态目标,降低虚警率。
两者结合使用,不仅可以有效地检测到远处的微弱移动目标,还能提供目标的速度和方向信息。
至于雷达系统本身,它是一种利用电磁波探测目标的设备。
雷达工作时,会发射电磁波,这些波遇到物体后会反射回来,雷达接收这些回波并根据其特性(如时间延迟、频率变化等)来获取目标的距离、速度、角度等信息。
在军事、航空、气象、交通等多个领域,雷达都发挥着重要作用。
在提供的"MTD算法.txt"文件中,可能包含了关于这些概念的详细解释、仿真过程或代码实现。
通过深入研究这个文件,我们可以更深入地理解MTD算法如何在脉冲压缩的基础上进行动目标检测,以及在实际应用中如何优化雷达系统的性能。
MTD算法和脉冲压缩是雷达技术的两个关键组成部分,它们共同提升了雷达在复杂环境下的目标检测能力和精度。
通过对这两个技术的深入理解和实践,我们可以设计出更先进的雷达系统,满足各种应用场景的需求。
2025/6/23 10:32:55 3KB 脉冲压缩 雷达目标检测
1

【电子秤设计】电子秤是电子衡器的一种,随着电子技术的发展,电子秤逐渐替代了传统的机械杠杆测量称,成为了现代测量领域的主流产品。
电子秤的发展趋势体现在小型化、模块化、集成化和智能化,其技术性能追求高速度、高精度、高稳定性和高可靠性,功能上则注重控制信息和非控制信息的融合,实现“智能化”。
【手提电子秤】手提电子秤在日常生活中广泛应用,因其精确度高、操作简便、成本低廉和便携性好而深受消费者青睐。
设计一款手提电子秤,需要满足以下要求:使用电阻应变式传感器进行重量信号测量,称重范围不超过5kg,测量精度要求在±0.01%以内,显示方式为LCD显示屏。
【设计要求与任务】设计手提电子秤时,需考虑以下几点:制定数据采集和显示系统的总体方案,设计信号调理电路并选配合适的元器件,选择满足精度要求的A/D转换器,构建单片机系统电路和显示单元,绘制电路原理图和软件流程图,同时编写详细的课程设计说明书。
【总体方案设计】手提电子秤的工作原理涉及多个环节:电阻应变式传感器捕捉重量信号,信号经过差动放大电路增强;
接着,A/D转换电路将放大后的模拟信号转化为数字信号;
这些数字信号传递至显示电路,通过LCD显示屏呈现数据。
【硬件电路设计】在硬件设计中,选择了电阻应变式传感器,它基于金属电阻丝在外力作用下产生电阻变化的原理工作。
传感器主要包括电阻应变片、弹性体和检测电路,其中电阻应变片的灵敏系数K是关键参数,它决定了传感器对外力变化的响应程度。
设计一款便携式手提电子秤需要深入理解电子秤的工作原理,选择适当的传感器和电路组件,确保测量精度和显示效果,同时考虑设备的便携性和成本效益。
在实际设计过程中,还需要通过软件编程实现数据处理和用户交互,以提供准确、便捷的称重服务。
2025/6/20 7:27:39 562KB
1

在电子技术领域,鼠标作为计算机输入设备之一,其工作原理和设计是计算机硬件的重要组成部分。
本文将详细讨论标题“一种用方波驱动鼠标光标移动的鼠标电路的设计”所涉及的知识点,包括鼠标的工作机制、方波在鼠标控制中的作用以及如何通过电路设计实现这一功能。
我们要理解鼠标的最基本工作原理。
传统的鼠标内部通常包含一个光学传感器或机械滚轮,用于检测鼠标在桌面的移动。
当鼠标移动时,这些传感器会将物理运动转化为电信号,然后通过微控制器(MCU)处理这些信号,最后通过USB或蓝牙接口发送到计算机,使屏幕上的光标相应地移动。
方波驱动鼠标光标移动的技术则涉及到更精细的控制。
方波是一种周期性变化的数字信号,具有明确的上升沿和下降沿,常用于时钟信号或脉冲宽度调制(PWM)。
在这个设计中,方波用于控制鼠标光标的移动速度和方向。
通过调整方波的频率、占空比或相位,可以精确地改变光标移动的速度和方向,从而实现更细腻的操作。
具体实现过程中,设计者可能采用以下步骤:1. **信号生成**:利用MCU或者专用的信号发生器生成可调的方波信号。
2. **信号处理**:将方波信号与传感器检测到的鼠标移动信号结合,根据方波的特性来调整光标移动的速率。
3. **脉宽调制**:可能采用PWM技术,通过改变方波的占空比来控制光标的加速度或减速度,从而实现更平滑的移动体验。
4. **接口控制**:通过USB或蓝牙接口,将处理后的信号发送给计算机,使得光标按照预设的轨迹移动。
5. **反馈系统**:可能包含一个反馈回路,监测光标的实际位置,并根据误差进行实时调整,以提高精度。
电路设计中,需要考虑以下关键组件:- **微控制器**:如Arduino或STM32等,负责处理信号并控制整个系统。
- **传感器**:可能是光学传感器或机械滚轮,捕捉鼠标移动。
- **信号调理电路**:用于滤波、放大或整形传感器信号,使其适应MCU的输入要求。
- **方波生成电路**:可能包含振荡器和逻辑门电路,产生可调的方波信号。
- **接口电路**:USB或蓝牙接口电路,用于与计算机通信。
在实际应用中,这样的设计可能适用于专业级游戏鼠标或高精度的图形设计工具,因为它能提供更精确、更灵敏的光标控制。
设计者还需要考虑到电源管理、抗干扰措施以及用户友好的界面设置等方面,以确保整体系统的稳定性和易用性。
用方波驱动鼠标光标移动的鼠标电路设计是一种创新的方法,它通过精细化控制信号,提升了鼠标的操控性能。
这种技术的实现涉及到了微控制器编程、信号处理、接口设计等多个方面的知识,是电子工程和计算机科学的交叉领域。
2025/6/20 1:32:31 140KB
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡