https://download.csdn.net/download/qq_41739364/86339152
2024/11/2 16:33:25 2.08MB python
1
MPU6050最小板子可直接使用含原理图pcb电压转换模块
2024/11/2 7:48:08 1.59MB MPU6050 最小
1
CHI700E系列是通用双恒电位仪,可同时控制同一电解池中的两个工作电极的电位,其典型应用是旋转环盘电极,也能被用于其它需要双工作电极的情况下。
双恒电位仪只能用于同一溶液中的两个工作电极的电位控制以及电流测量,而不是两个独立的恒电位仪。
仪器内含快速数字信号发生器,用于高频交流阻抗测量的直接数字信号合成器,双通道高速数据采集系统,电位电流信号滤波器,多级信号增益,iR降补偿电路,双恒电位仪,以及恒电流仪(CHI760E)。
两个通道的电位范围均为+/-10V。
电流范围(两通道电流之和)为±250mA。
CHI700E系列是在CHI600E的基础上增加了一块电路板,内含第二通道电位控制电路,电流-电压转换器,灵敏度选择,三个增益级,一个具有八个数量级可变频率范围的二阶低通滤波器。
CHI700E能够控制两个工作电极的电位,允许循环伏安法,线性扫描伏安法,阶梯波伏安法,计时安培法,差分脉冲伏安法,常规脉冲伏安法,方波伏安法,时间-电流曲线等实验技术进行双工作电极的测量。
当用作双恒电位仪测量时,第二工作电极电位可以保持在独立的恒定值,也可与第一工作电极同步扫描或阶跃等。
在循环伏安法中,还可与第一工作电极保持一恒定的电位差而扫描。
两个工作电极的电流测量下限均低于50pA,可直接用于超微电极上的稳态电流测量。
CHI700E系列也是十分快速的仪器。
信号发生器的更新速率为10MHz,数据采集采用两个同步16位高分辨低噪声的模数转换器,双通道同时采样的最高速率为1MHz。
循环伏安法的扫描速度为1000V/s时,电位增量仅0.1mV,当扫描速度为5000V/s时,电位增量为1mV。
又如交流阻抗的测量频率可达1MHz,交流伏安法的频率可达10KHz。
仪器还有外部信号输入通道,可在记录电化学信号的同时记录外部输入的电压信号,例如光谱信号等。
这对光谱电化学等实验极为方便。
2024/10/6 4:51:17 13.37MB 辰华
1
STM32F103做的一款PT100温度检测设备,通过ADC转换电压得到分度表中的温度。
2024/6/18 19:17:28 4KB STM32F103 PT100 ADC 实测
1
频率电压转换,用的TI的LM331芯片,自己画的板子,附带自己整理的原理图和参考文档
2024/6/11 2:38:56 3.76MB LM331 频率电压
1
MPU6050最小板子可直接使用含原理图pcb电压转换模块
2024/5/30 18:26:04 1.59MB MPU6050 最小板子 可直接使用 含原理图
1
《项目实战:Qt多通道数据采集系统(通道配置、电压转换、采样频率、通道补偿值、定时采集、导出excel和图表、自动XY轴、隐藏XY轴、实时隐藏显示通道)》https://blog.csdn.net/qq21497936/article/details/110941614博主博客不欢迎白嫖党,请自觉绕道
1
ADI:四象限电压转换,请参见:https://handsome-man.blog.csdn.net/article/details/114291504
1
该工具可以比较方便的转换热电阻的阻值大小与温度,热电偶对应的电压大小与温度,附有冷端补偿
2023/9/8 9:56:09 51KB 热电阻热电偶
1
一、将2560及ramps1.4群集在一块板子上,处置了Ramps1.4组合接口繁缛,易出缺陷的下场。
二、可改换电机驱动,反对于4988驱动以及8825驱动。
三、电路板付与高品质的4层板,并特意作了散热优化处置;
ramps是2层板。
四、付与高品质MOSFET管,散热下场更好。
五、付与专用电源芯片,反对于12V-24V电源输入,处置Ramps电压转换芯片发烧下场。
六、能够接受24V输入,同样体系功率下能够把热床电流减小到1/4,实用场置热床MOS管发烧下场。
七、固件能够使用开源固件Marlin,配置配备枚举以及ramps1.4残缺相同,可间替换代Ramps1.4。
八、可直接毗邻Ramps1.4,2004LCD抑制板及12864LCD抑制板。
九、预留电机脉冲以及倾向输入端口,便捷外挂大电流要外接大电流(如2A,5A)电机驱动电路。
十、留存Ramps1.4上Servos、AUX-一、AUX-2接口,提供3个5V输入、3个12V输入接口。
2023/4/27 12:18:42 3.39MB mks
1
共 14 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡