《现代数学基础丛书:索伯列夫空间导论》主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。
内容涉及Lebesgue空间Lp(Ω)及其基本性质;
整数阶索伯列夫空间Wm,p(Ω)及其性质;
Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。
论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。
引见类似于索伯列夫空间嵌人定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在性。
讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间Hs(RN)和Hs(Ω)及其性质。
引见近年来国内外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工具,进入研究偏微分方程等学科的前沿。
《现代数学基础丛书:索伯列夫空间导论》可作为偏微分方程、计算数学、泛函分析、数学物理、控制论和微分几何等专业的本科生、研究生的教材和参考书,也可供从事相关专业研究的科技工作者参考。
1