提出一种无源电检测装置,对A304不锈钢YAG激光焊接过程中的等离子体电信号进行检测,并利用高速摄像机对等离子体的形态进行观察。
结果表明,不同焊接模式下的等离子体电信号具有不同的时域特征。
对不同焊接模式下的等离子体电信号特征进行理论与试验分析,发现等离子体电信号受等离子体效应和鞘层效应的共同影响;小孔的形成与否是造成不同焊接模式下等离子体电信号特征不同的决定性因素。
2024/5/9 5:49:03 10.43MB 激光技术 激光焊接 激光等离 电信号
1
为了拓展半导体激光器在激光加工领域的应用范围,使其能够应用到厚板金属材料的焊接中,采用了Laserline公司研制的LDF4000-40光纤耦合半导体激光焊接系统,研究了其厚板SUS304奥氏体不锈钢的焊接性能。
实验结果表明,其厚板SUS304奥氏体不锈钢焊接过程中完全能够形成匙孔效应,具有较强的穿透能力;
相比于同等工作条件下的光纤激光,其焊接熔深有所减小,而焊接熔宽有所增加;
焊缝成型及焊接过程稳定性要优于光纤激光,飞溅量明显小于光纤激光。
由此证实了光纤耦合半导体激光器完全可以用于厚板金属材料的焊接。
1
利用6kW光纤激光器对1.5mm厚冷轧800MPa级双相钢进行激光拼焊试验,研究激光焊接接头的显微组织演变规律、显微组织对显微硬度及疲劳性能的影响规律。
结果表明,焊接接头主要包括焊缝区(WZ)、粗晶区(CGHAZ)、细晶区(FGHAZ)、混晶区(MGHAZ)和回火区(TZ),其中焊缝区和粗晶区显微组织均为马氏体,但焊缝区内的原始奥氏体晶界保留着柱状晶的生长形态,粗晶区内的原始奥氏体晶界呈多边形生长;
细晶区和混晶区均为铁素体和马氏体,但细晶区的显微组织更为精细;
回火区主要由铁素体和回火马氏体组成。
混晶区和回火区显微硬度均低于母材,共同组成了焊接接头的软化区。
由于软化区尺寸相对较窄(0.4mm)且硬度降低幅度低(~6.8%),拉伸断裂位置出现在母材。
在应力比为0.1的拉拉疲劳条件下,母材和焊接接头的疲劳极限分别为545MPa和475MPa,疲劳断裂未出现在软化区。
母材中的疲劳裂纹在铁素体与马氏体两相界面萌生并扩展;
而焊接接头中的疲劳裂纹则在焊缝中的奥氏体晶界上或马氏体板条内萌生,沿着焊缝中心处柱状原始奥氏体晶界的交汇处切断马氏体板条束扩展。
2023/8/14 11:37:40 28.66MB 激光技术 双相钢 激光焊接 显微硬度
1
采用3kW光纤激光偏置铝侧焊接的方式,完成了TC4钛合金和6082铝合金的连接。
测试了接头的宏微观组织及力学性能特征,通过有限元方法对接头的温度场分布及钛/铝结合界面的热循环曲线进行了模拟。
研究结果表明,钛/铝激光偏置焊接可获得无裂纹、无气孔,具有良好拉伸强度的接头,钛试板在焊接过程中发生部分熔化,端面变得不平整。
在凝固过程中,钛/铝结合界面会形成一个厚度较薄的钛/铝金属间化合物层,其主要相为TiAl3。
拉伸试验表明,接头的最高抗拉强度为153MPa,是铝基材强度的72.9%;
接头的断裂模式为脆性解理断裂,断裂发生在金属间化合物层位置,引起断裂的脆性相为TiAl和TiAl3。
2023/7/17 15:47:06 19.47MB 激光技术 激光焊接 异种金属 钛合金
1
用于激光焊接熔覆等fluent仿真有初始化文件材料物性定义激光移动热源传导系数等等文件udf\initialization_1.cudf\initialization_2.cudf\source.cudf\source_heat.cudf\ti64_spec_T.cudf\udf_density_temp.cudf\udf_heatconductivity_temp1.cudf\viscosity-temp2.cudf
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡