DeepLearningToolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。
您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。
应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。
对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。
了解深度学习工具箱的基础知识深度学习图像从头开始训练卷积神经网络或使用预训练网络快速学习新任务使用时间序列,序列和文本进行深度学习为时间序列分类,回归和预测任务创建和训练网络深度学习调整和可视化绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能并行和云中的深度学习通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络深度学习应用通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程深度学习导入,导出和自定义导入和导出网络,定义自定义深度学习图层以及自定义数据存储深度学习代码生成生成MATLAB代码或CUDA®和C++代码和部署深学习网络函数逼近和聚类使用浅层神经网络执行回归,分类和聚类时间序列和控制系统基于浅网络的模型非线性动态系统;使用顺序数据进行预测。
2025/3/29 11:02:30 14.06MB deep l matlab 深度学习
1
matlab深度学习工具箱,提供深度神经网络的相关工具。
2025/2/20 1:02:13 14.06MB MATLAB 深度学习 工具箱
1
Alex在2012年提出的alexnet网络结构模型引爆了神经网络的应用热潮,并赢得了2012届图像识别大赛的冠军,使得CNN成为在图像分类上的核心算法模型。
2025/1/25 21:31:35 5KB 深度学习
1
深度学习(DeepLearning)是近年来提出的一种利用具有多个隐层的深度神经网络(DeepNeuralNetwork,DNN)完成学习任务的机器学习方法。
其实质是,通过构建具有多个隐层的神经网络模型并使用大量的训练数据来学习得到更有用的特征,进而提升模型预测或分类的准确性。
与以往的浅层神经网络的不同之处在于,深度学习主要强调了神经网络的深度(通常有大于1层的隐层),还突出了特征学习的重要性,从大数据中学习特征,这些特性可以刻画数据丰富的内在信息。
2025/1/19 7:51:09 10.13MB 深度学习 图像识别
1
MATLAB工具包DEEPLEARNINGTOOLBOX(一)DeepLearningToolbox™提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。
我们可以使用卷积神经网络(ConvNet、CNN)和长短期记忆(LSTM)网络对图像、时序和文本数据执行分类和回归。
2024/10/23 7:57:32 216.9MB 深度学习
1
基于MATLAB语言,循序渐进,搭建深度神经网络,精通深度学习
2024/10/21 13:16:47 37.06MB 神经网络 MATLAB 深度学习
1
基于深度神经网络的用户会话推荐算法研究基于深度神经网络的用户会话推荐算法研究
2024/10/15 7:49:29 4.16MB 深度学习 机器学习 神经网络
1
基于深度神经网络的风机叶片缺陷识别方法,代海涛,李颖,为了解决风机叶片缺陷检测效率低下的问题,文章提出了一种基于深度神经网络的风机叶片缺陷识别方法。
首先,根据风电机组的结构特
2024/9/29 19:28:32 548KB 首发论文
1
深层学习专业吴安(AndrewNg),deeplearning.ia,库拉教学大纲+Course1:NeuralNetworksandDeepLearning第一周第1课:深度学习简介第二周第2课:逻辑回归作为神经网络第3课:Python和向量化实验1:Numpy的Python基础作业1:具有神经网络心态的Logistic回归第三周第4课:浅层神经网络作业2:具有一个隐藏层的平面数据分类第四周讲座5:深度神经网络作业3:逐步建立您的深度神经网络作业4:深度神经网络应用+Course2:ImprovingDeepNeuralNetworks:HyperparameterTuning,RegularizationandOptimization第五周第6课:设置机器学习应用程序第7课:规范化您的神经网络第8
2024/9/26 2:56:01 30.76MB JupyterNotebook
1
这个是深度神经网络的工具类和数据集,里面包括:dnn_utils_v2_lr_utils_dataset
2024/9/18 5:09:12 1.95MB dnn_utils_v2
1
共 37 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡