《Python源码剖析-深度探索动态语言核心技术》-高清带标签!陈儒著!
2025/1/1 5:38:43 29.09MB Python
1
《嵌入式网络那些事:LwIP协议深度剖析与实战演练》此书的配套源码
2024/12/31 10:23:09 21.19MB LWIP 嵌入式 网络
1
可以自己输入起始状态和终止状态,包含全局最优搜索,深度最优搜索,广度最优搜索,启发式最优搜索
2024/12/29 6:08:58 44KB 八数码,源码,java
1
用邻接矩阵作为存储方式,C++实现的无向图的建立,广度遍历和深度遍历,以及求顶点的度数和邻接点
2024/12/27 11:35:56 7KB 广度遍历 深度遍历 求顶点的度数
1
做深度学习目标检测方面的同学怎么都会接触到PASCALVOC这个数据集。
也许很少用到整个数据集,但是一般都会按照它的格式准备自己的数据集。
所以这里提供PASCALVOC的格式,包括目录构成以及各个文件夹的内容格式,方便以后自己按照VOC的标准格式制作自己的数据集。
2024/12/23 21:22:46 14.71MB 深度学习 数据集 条形码 目标检测
1
本合集涵盖了2015-2019年发表在计算机视觉三大顶级会议上的基于深度学习的图像超分辨率算法的大多数论文。
1
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是图像处理、分析和机器视觉领域的一本经典教材,第3版提供了高清英文原版的PDF版本。
这本书深入浅出地探讨了图像处理的基础理论和应用,是计算机视觉、电子工程、生物医学工程等相关专业学生和研究人员的重要参考书。
我们要理解图像处理的基本概念。
图像处理涉及到对数字图像进行各种操作,以改善其质量、提取有用信息或进行分析。
这包括图像增强、去噪、分割和复原等技术。
例如,图像增强通过调整亮度、对比度来优化视觉效果;
去噪则通过滤波器去除图像中的噪声;
图像分割将图像区域划分为不同的对象或类别,便于进一步分析。
机器视觉则是图像处理的一个重要应用领域,它使计算机能够“看”并理解图像。
在《MilanSonka》一书中,读者可以学习到如何构建和应用机器视觉系统。
这包括特征检测(如边缘检测、角点检测)、模板匹配、模式识别和物体识别等技术。
这些技术在自动驾驶、无人机导航、工业自动化和医疗诊断等领域有着广泛应用。
此外,书中还涵盖了与机器学习相关的主题,如监督学习和无监督学习,它们在图像分类、目标检测和图像识别任务中至关重要。
支持向量机(SVM)、神经网络、深度学习框架(如卷积神经网络CNN)等现代机器学习方法也是书中讨论的重点。
深度学习,尤其是深度卷积网络,已经在图像处理和计算机视觉领域取得了突破性进展,极大地推动了人脸识别、图像生成和自动驾驶等技术的发展。
书中还涉及到了图像分析,这是对图像内容进行理解和解释的过程。
这包括图像理解、场景分析和行为识别。
图像理解需要从图像中提取高级语义信息,比如识别出图像中的物体、场景和事件。
场景分析则涉及环境的理解,例如确定图像中的背景、前景和物体之间的关系。
行为识别则关注动态图像中的动作和活动,如行人跟踪和运动分析。
书中还涵盖了实际应用中的算法实现和评估方法,这对于任何从事图像处理和机器视觉研究的人来说都是必不可少的知识。
实验部分通常会介绍如何使用编程语言(如MATLAB或Python)实现所讨论的算法,并提供数据集和代码示例。
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是一部全面覆盖图像处理、分析和机器视觉的教材,无论你是初学者还是经验丰富的专业人士,都能从中受益匪浅。
通过深入学习这本书,你可以掌握图像处理的基本原理,理解机器视觉的核心技术,并了解如何将这些知识应用于实际项目中。
2024/12/18 9:29:46 26.8MB 图像处理
1
2020年工业软件行业深度研究报告
2024/12/17 3:48:13 12.48MB 2020年工业软件行业深度研究
1
包含各类题解及模拟试卷复习纲要〈〈模拟电子技术基础〉〉复习纲要第一章:常用半导体器件(1) 熟悉下列定义、概念及原理:自由电子与空穴,扩散与漂移,复合,空间电荷区、PN结、耗尽层,导电沟道,二极管的单向导电性,稳压管的稳压作用,晶体管与场效应管的放大作用及三个工作区域。
(2) 掌握二极管、稳压管、晶体管、场效应管的外特性、主要参数的物理意义。
掌握其应用。
(3) 了解选用器件的原则。
了解集成电路制造工艺。
第二章:基本放大电路(1) 掌握以下基本概念和定义:放大、静态工作点、饱和失真与截止失真、直流通路与交流通路、直流负载线与交流负载线、h参数等效模型、放大倍数、输入电阻和输出电阻、最大不失真输出电压。
掌握静态工作点稳定的必要性及稳定方法。
(2) 掌握组成放大电路的原则和各种基本放大电路的工作原理及特点,理解派生电路的特点,能够根据具体要求选择电路的类型。
(3) 掌握放大电路的分析方法,能够正确估算常用基本放大电路(共射、共集、共源为主)的静态工作点和动态参数Au、Ri、Ro,正确分析电路的输出波形和产生截止失真、饱和失真的原因。
第三章:多级放大电路(1) 掌握以下概念和定义:零点漂移与温度漂移,共模信号与共模放大倍数,差模信号与差模放大倍数,共模抑制比,互补输出电路。
(2) 掌握各种耦合方式的优缺点,能够正确估算多级放大电路的Au、Ri、Ro。
(3) 掌握差动放大器静态工作点和动态参数的计算方法。
(4) 掌握OCL电路。
第四章:集成运算放大电路(1) 熟悉集成运放的组成及各部分电路的特点、作用,正确理解其主要指标参数的物理意义、使用注意事项及其模型。
(2) 理解电流源电路的工作原理。
(3) 理解F007的电路原理。
第五章:放大电路的频率响应(1) 掌握以下概念:上限频率,下限频率,通频带,波特图,增益带宽积,幅值裕度,相位裕度,相位补偿。
(2) 能够计算放大电路中只含一个时间常数时的fH和fL,并能画出波特图。
(3) 了解多级放大器频率响应与组成它的各级电路频率响应间的关系。
(4) 了解集成运放中常用的相位补偿方法。
第六章:放大电路中的反馈(1) 能够正确的判断电路中是否引入了反馈以及反馈的性质,例如是直流反馈还是交流反馈,是正反馈还是负反馈,如是交流负反馈,是哪种组态的反馈等。
(2) 能够估算深度负反馈条件下电路的放大倍数。
(3) 掌握负反馈的四种组态对放大电路性能的影响,并能够根据需要在放大电路中引入合适的交流负反馈。
(4) 正确理解负反馈放大电路产生自激振荡的原因,能够利用环路增益的波特图判断电路的稳定性,并了解消除自激振荡的方法。
第七章:信号的运算和处理(1) 掌握比例、加减、积分、微分、对数和指数电路的工作原理及运算关系,能够运用“虚短”和“虚断”的概念分析各种运算电路输出电压与输入电压之间的运算关系,能够根据需要合理地选择电路。
(2) 正确理解LPF、HPF、BPF、BEF的工作原理和电路计算,并能够根据需要合理地选择电路。
(3) 了解干扰和躁声的来源及抑制方法。
第八章:波形的发生和信号的转换(1) 熟练掌握电路产生正弦波振荡的幅值平衡条件和相位平衡条件,RC桥式正弦波振荡电路的组成、起振条件和振荡频率。
正确理解变压器反馈式、电感反馈式、电容反馈式LC振荡电路和石英晶体振荡电路的工作原理,能够根据相位平衡条件正确判断电路是否可能产生正弦波。
正确理解它们的振荡频率与电路参数的关系。
(2) 正确理解由集成运放构成的矩形波、三角波和锯齿波发生电路的工作原理、波形分析和有关参数。
(3) 了解锁相环电路的方框图及工作原理。
第九章:功率放大电路(1) 掌握下列概念:晶体管的甲类、乙类和甲乙类工作状态,各类电路的优缺点,最大输出功率,转换效率。
(2) 正确理解功率放大电路的组成原则,掌握OTL、OCL的电路及原理,并理解其它类型功率放大电路的特点。
(3) 掌握功率放大电路的最大输出功率和效率的计算,掌握功放管的选择方法。
(4) 了解集成功率放大电路的工作原理和应用。
第十章:直流电源(1) 正确理解直流稳压电源的组成及各部分的作用。
(2) 能够分析整流电路的工作原理,估算输出电压及电流的平均值。
(3) 了解滤波电路的工作原理,能够估算电容滤波电路输出电压平均值。
(4) 掌握稳压管稳压电路的工作原理,能够正确进行限流电阻的估算。
(5) 正确理解串联型稳压电路的工作原理,能够估算输出电压的调节范围。
(6) 掌握集成稳压器的工作原理及使用方法。
(7) 理解开关型稳压电路的工作原理及特点。
2024/12/14 17:39:44 5.37MB 模电
1
《国外电子信息类系列教材:面向服务的计算和Web数据管理》讲授SOA、SOC和SOD这三个主题,而且在一定的宽度和深度上覆盖了每个主题的大部分内容。
这些内容不仅涉及SOA/SOC的概念、原理和方法,还包括可运行代码的演示。
2024/12/13 22:18:51 159.57MB SOA Web数据管理
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡