微软coco数据集中测试集2014:test2014.zip。
这只是图片数据,而没有标签数据,因为coco数据集中的测试数据集根本就没有标签数据
2025/3/22 8:36:34 49B test2014 coco数据集 MSCOCO
1
houston2013的数据集包括hsi+lidar数据集,已被划分成测试集和训练集
2025/3/18 14:41:47 13.69MB 数据集 LIDAR数据
1
一个高质量的海量数据集,共包含6大类20个细粒度要素的情感倾向。
含有训练集、验证集和测试集
2025/3/6 5:27:44 51.3MB 情感分析
1
手撸bp神经网络实现手写数字识别,仅使用numpy完成,适合深度学习入门玩家,60000个训练数据训练时间半分钟,测试集正确率96%+
2025/3/2 9:29:47 13.04MB 深度学习 神经网络
1
基于BP神经网络,测试集辛烷值含量预测结果对比
2025/2/24 22:18:36 169KB BP神经网络
1
caffe的mnist例子的测试集转换成了caffe网络可以用的lmdb格式配合博客来看http://blog.csdn.net/gyh_420/article/details/78230536
2025/2/23 16:21:55 10.89MB lmdb
1
由于food-11的原数据过于庞大(1.08G)无法上传,所以将分成两部分进行上传:training+validation和testing此链接包括测试集testing,提取码:yile
2025/2/20 12:49:25 232.73MB 机器学习
1
垃圾分类训练数据集,每张垃圾图片带有同名txt标签文件,共14802张图。
在机器学习中会把数据分为训练集、测试集和检验集。
2025/2/3 14:46:57 549.64MB 垃圾分类 数据集
1
花卉数据集,共有102个类,手工将数据集分类,并划分了验证集、测试集、训练集。
2025/2/2 11:52:12 330.41MB 深度学习
1
基于MATLAB的adaboost算法,先对训练集进行训练,然后对测试集进行测试,最后得出采用adaboost算法对样本进行处理的错误率,最后得出比较图形。
2025/1/21 11:24:47 262KB adaboost 训练集 测试集 错误率
1
共 151 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡