给定皮肤镜黑素细胞瘤图像,检测毛发噪声,并修复毛发遮挡部位的信息。
皮肤镜图像毛发去噪,主要包括五个步骤:波谷检测器、阈值分割、区域生长、标记连通域、掩膜恢复重建。
2024/8/21 10:32:15 4KB 图像处理
1
给定皮肤镜黑素细胞瘤图像,检测毛发噪声,并修复毛发遮挡部位的信息。
(1)灰值化:对皮肤镜黑素细胞瘤彩色图像进行灰值化处理,将彩色图像变成灰度格式;
(2)波谷检测器:使用结构元素对给定灰度图像进行形态学灰度闭运算,先膨胀后腐蚀,填充物体内细小空洞,连接邻近物体,再将原图与灰度闭运算得到的图像相减,得到背景色较暗,毛发区域较亮的毛发提取图像;
(3)阈值分割:经过波谷检测后的图像能够基本提取出毛发区域,使用交互式阈值分割,对毛发提取图像进行二值分割,为区域生长制作毛发掩膜做准备;
(4)标记连通域,剔除弱小噪声:用区域生长法提取连通域,并标记毛发区域,统计各连通区域的大小,设定阈值,屏蔽小的连通区域,去除背景中的杂小噪声点,尽可能的少破坏原始图像的信息;
(5)掩膜,恢复原始皮肤信息:将去除噪声后的二值图像作为掩膜,对毛发区域进行恢复重建。
2024/5/16 1:34:17 67.4MB 区域生长 波谷检测 C++ 掩膜
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡