该程序对SAR图像的背景杂波建立了多种统计模型,如对数正态分布、韦布尔分布、瑞利分布、gamma分布等,分别计算其拟合参数。
并通过k-s准则,绝对值准则,峰度等选择最佳的分布模型和参数估计,并把各种分布图进行对照显示
1
北京大学数学教学系列丛书应用多元统计分析高惠璇多元正态分布 回归分析 判别分析 聚类分析 主成份分析 因子分析
1
高斯多峰拟合,需要数据基本符合高斯分布(正态分布)
2025/8/5 11:13:35 31KB 高斯分布
1
授课对象:这是一门数学课程,适合有志于转往大数据分析领域的非数学专业人士(例如IT人,业务人员等)补强数学基础,以更好地学习更高级的数据分析,数据挖掘,机器学习课程收获预期:可以大幅度提高学员的数学基础,使其学习其它大数据分析课程时觉得更加简单,得心应手课程内容:第1课面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表)第2课赌博设计:概率的基本概念,古典概型第3课每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性第4课啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布)&J.e3P:w6X2^;K*W1U&X第5课万事皆由分布掌握:多维随机变量及其分布4o7|%v%n9\"m4R)|第5课砖家的统计学:随机变量的期望,方差与协方差"s4@+n.v"I:V)`-u第6课上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布+j:W+V/n1_4Y)`/w+[第8课点数成金,从抽样推测规律之一:参数估计之点估计$v3^1V.H(t,G9b:U第9课点数成金,从抽样推测规律之二:参数估计之区间估计第10课对或错?告别拍脑袋决策:基于正态总体的假设检验第11课扔掉正态分布:秩和检验!s!G1w#i3P*]#e第12课预测未来的技术:回归分析,O%b!U)k4h#]$p第13课抓住表象背后那只手:方差分析第14课沿着时间轴前进,预测电子商务业绩:时间序列分析简介,X.n%b4~8PE9\+d第15课PageRank的背后:随机过程与马尔科夫链简介
2025/7/23 6:41:21 61B 大数据
1
用于统计量化分析数据所用的标准正态分布概率表,记录了1~3倍标准差的概率分布,在,数据处理中有着广泛的应用.
2025/4/23 15:54:01 12KB 量化分析 统计 数据处理 正太分布
1
Matlab正态分布随机数,产生N(a,b^2)的正态分布
2025/4/4 12:29:06 627B Matlab正态分布随机数
1
题目在下面,通过SPSS做的回归分析小论文,原理操作都很详细。
一:某公司在各地区销售一种特殊的化妆品。
该公司观测了15个城市在某季度内对该化妆品的销售量Y及各地区适合使用该化妆品的人数X1和人均收入X2,得到数据如表所示。
假设误差服从正态分布N(0,)试建立Y与X1,X2之间的线性回归方程并研究相应的统计推断问题(数据略)。
内容要求包括:(1)数据描述性分析,自变量与因变量线性关系预判断;
(2)回归分析,模型检验,系数检验;
(3)多重共线性检验,DW检验;
(4)残差分析。
二:下面是我国1990到2013年的一些经济数据,请做回归分析(数据略)。
2025/4/1 5:04:53 259KB data analysis
1
%MATLAB数学建模工具箱%%本工具箱主要包含三部分内容%1.MATLAB常用数学建模工具的中文帮助%2.贡献MATLAB数学建模工具(打*号)%3.中国大学生数学建模竞赛历年试题MATLAB程序%数据拟合%interp1-一元函数插值%spline-样条插值%polyfit-多项式插值或拟合%curvefit-曲线拟合%caspe-各种边界条件的样条插值%casps-样条拟合%interp2-二元函数插值%griddata-不规则数据的二元函数插值%*interp-不单调节点插值%*lagrange-拉格朗日插值法%%方程求根%inv-逆矩阵%roots-多项式的根%fzero-一元函数零点%fsolve-非线性方程组%solve-符号方程解%*newton-牛顿迭代法解非线性方程%%微积分和微分方程%diff-差分%diff-符号导函数%trapz-梯形积分法%quad8-高精度数值积分%int-符号积分%dblquad-矩形域二重积分%ode45-常微分方程%dsolve-符号微分方程%*polyint-多项式积分法%*quadg-高斯积分法%*quad2dg-矩形域高斯二重积分%*dblquad2-非矩形域二重积分%*rk4-常微分方程RungeKutta法%%随机模拟和统计分析%max,min-最大,最小值%sum-求和%mean-均值%std-标准差%sort-排序(升序)%sortrows-按某一列排序(升序)%rand-[0,1]区间均匀分布随机数%randn-标准正态分布随机数%randperm-1...n随机排列%regress-线性回归%classify-统计聚类%*trim-坏数据祛除%*specrnd-给定分布律随机数生成%*randrow-整行随机排列%*randmix-随机置换%*chi2test-分布拟合度卡方检验%%数学规划%lp-线性规划%linprog-线性规划(在MATLAB5.3使用)%fmin-一元函数极值%fminu-多元函数极值拟牛顿法%fmins-多元函数极值单纯形搜索法%constr-非线性规划%fmincon-非线性规划(在MATLAB5.3使用)%%离散优化%*enum-枚举法%*monte-蒙特卡洛法%*lpint-线性整数规划%*L01p_e-0-1整数规划枚举法%*L01p_ie-0-1整数规划隐枚举法%*bnb18-非线性整数规划(在MATLAB5.3使用)%*bnbgui-非线性整数规划图形工具(在MATLAB5.3使用)%*mintreek-最小生成树kruskal算法%*minroute-最短路dijkstra算法%*krusk-最小生成树kruskal算法mex程序%*dijkstra-最短路dijkstra算法mex程序%*dynprog-动态规划%%%图形%plot-平面曲线(一元函数)%plot3-空间曲线%mesh-空间曲面(二元函数)%*meshf-非矩形网格图%*draw-用鼠标划光滑曲线%%中国大学生数学建模竞赛题解%jm96a-捕鱼策略%jm96b-节水洗衣机%jm96bfun-节水洗衣机优化函数%jm97a-零件参数设计%jm97afun-零件参数函数%jm97aoptim-零件参数设计优化函数%jm97b-截断切割%jm97bcount-截断切割枚举法%jm97brule-截断切割优化准则%jm98a1-风险投资模型求解%jm98a2-风险投资模型讨论%jm98a3-收益与风险非线性模型求解%jm98a3fun-收益与风险非线性模型优化函数%jm98b-灾情巡视路线(C程序)%jm99a1-自动化车床模型一%jm99a1fun-自动化车床模型目标函数%jm99a1simu-自动化车床模型随机模拟%jm99asmfun-自动化车床模型费用函数%%演示程序%fun
1
《深入浅出统计学》具有深入浅出系列的一贯特色,提供最符合直觉的理解方式,让统计理论的学习既有趣又自然。
从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。
本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。
本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
2025/1/22 6:57:50 49.93MB 统计学
1
用算法程序集(C语言描述)(第五版)+源代码第1章多项式的计算1.1一维多项式求值1.2一维多项式多组求值1.3二维多项式求值1.4复系数多项式求值1.5多项式相乘1.6复系数多项式相乘1.7多项式相除1.8复系数多项式相除第2章复数运算2.1复数乘法2.2负数除法2.3复数乘幂2.4复数的n次方根2.5复数指数2.6复数对数2.7复数正弦2.8复数余弦第3章随机数的产生3.1产生0到1之间均匀分布的一个随机数3.2产生0到1之间均匀分布的随机数序列3.3产生任意区间内均匀分布的一个随机整数3.4产生任意区间内均匀分布的随机整数序列3.5产生任意均值与方差的正态分布的一个随机数3.6产生任意均值与方差的正态分布的随机数序列第4章矩阵运算4.1实矩阵相乘4.2复矩阵相乘4.3一般实矩阵求逆4.4一般复矩阵求逆4.5对称正定矩阵的求逆4.6托伯利兹矩阵求逆的特兰持方法4.7求一般行列式的值4.8求矩阵的值4.9对称正定矩阵的乔里斯基分解与列式求值4.10矩阵的三角分解4.11一般实矩阵的QR分解4.12一般实矩阵的奇异值分解4.13求广义逆的奇异值分解法第5章矩阵特征值与特征向量的计算5.1约化对称矩阵为对称三对角阵的豪斯荷尔德变换法5.2求对称三对角阵的全部特征值与特征向量5.3约化一般实矩阵为赫申伯格矩阵的初等相似变换法5.4求赫身伯格矩阵全部特征的QR方法5.5求实对称矩阵特征值与特征向量的雅可比法5.6求实对称矩阵特征值与特征向量的雅可比过关法第6章线性代数方程组的求解6.1求解实系数方程组的全选主元高斯消去法6.2求解实系数方程组的全选主元高斯-约当消去法6.3求解复系数方程组的全选主元高斯消去法6.4求解复系数方程组的全选主元高斯-约当消去法6.5求解三对角线方程组的追赶法6.6求解一般带型方程组6.7求解对称方程组的分解法6.8求解对称正定方程组的平方根法6.9求解大型系数方程组6.10求解托伯利兹方程组的列文逊方法6.11高斯-塞德尔失代法6.12求解对称正定方程组的共岿梯度法6.13求解线性最小二乘文体的豪斯伯尔德变换法6.14求解线性最小二乘问题的广义逆法6.15求解病态方程组第7章非线性方程与方程组的求解7.1求非线性方程一个实根的对分法7.2求非线性方程一个实根的牛顿法7.3求非线性方程一个实根的埃特金矢代法7.4求非线性方程一个实根的连分法7.5求实系数代数方程全部的QR方法7.6求实系数方程全部的牛顿下山法7.7求复系数方程的全部根牛顿下山法7.8求非线性方程组一组实根的梯度法7.9求非线性方程组一组实根的拟牛顿法7.10求非线性方程组最小二乘解的广义逆法7.11求非线性方程一个实根的蒙特卡洛法7.12求实函数或复函数方程一个复根的蒙特卡洛法7.13求非线性方程组一组实根的蒙特卡洛法第8章插值与逼近8.1一元全区间插值8.2一元三点插值8.3连分式插值8.4埃尔米特插值8.5特金逐步插值8.6光滑插值8.7第一种边界条件的三次样条函数插值8.8第二种边界条件的三次样条函数插值8.9第三种边界条件的三次样条函数插值8.10二元三点插值8.11二元全区间插值8.12最小二乘曲线拟合8.13切比雪夫曲线拟合8.14最佳一致逼近的里米兹方法8.15矩形域的最小二乘曲线拟合第9章数值积分9.1变补长梯形求积法9.2变步长辛卜生求积法9.3自适应梯形求积法9.4龙贝格求积法9.5计算一维积分的连分式法9.6高振荡函数求积法9.7勒让德-高斯求积法9.8拉盖尔-高斯求积法9.9埃尔米特-高斯求积法9.10切比雪夫求积法9.11计算一维积分的蒙特卡洛法9.12变步长辛卜生二重积分方法9.13计算多重积分的高斯方法9.14计算二重积分的连分方式9.15计算多重积分的蒙特卡洛法第10章常微分方程组的求解10.1全区间积分的定步长欧拉方法10.2积分一步的变步长欧拉方法10.3全区间积分维梯方法10.4全区间积分的定步长龙格-库塔方法10.5积分一步的变步长龙格-库塔方法10.6积分一步的变步长基尔方法10.7全区间积分的变步长默森方法10.8积分一步的连分方式10.9全区间积分的双边法10.10全区间积分的阿当姆斯预报校正法10.11全区间积分的哈
2025/1/9 6:30:24 156.11MB 常用算法程序集 C语言 C++ 第五版
1
共 52 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡