文章地址:基于边界的模板匹配的原理及算法实现http://blog.csdn.net/huixingshao/article/details/45560643
2025/12/26 8:13:37 140KB 边界模板匹配
1
在MATLAB中实现SAD模板匹配算法,有示例,有结果。
另外,程序中也对SSD算法进行了实现说明,代码注释非常详细,对做图像匹配的学生有参考价值。
2025/12/23 18:14:02 85KB SAD匹配 SSD匹配
1
本文主要要实现字符识别,识别方法是用模板匹配。
内容包含模板,待识别字符,完整程序。
希望大家能够帮助大家。
本文主要要实现字符识别,识别方法是用模板匹配。
内容包含模板,待识别字符,完整程序。
希望大家能够帮助大家。
2025/12/21 3:40:12 22KB 字符识别 模板匹配
1
本书针的读者是高校学生,科研工作者,图像处理爱好者。
对于这些人群,他们往往是带着具体的问题,在苦苦寻找解决方案。
为了一个小问题就让他们去学习C++这么深奥的语言几乎是不可能的。
而Python的悄然兴起给他们带来的希望,如果说C++是tex的话,那Python的易用性相当于word。
他们可以很快的看懂本书的所有代码,并可以学着使用它们来解决自己的问题,同时也能拓展自己的视野。
别人经常说Python不够快,但是对于上面的这些读者,我相信这不是问题,现在我们日常使用的PC机已经无比强大了,而且绝大多数情况下不会用到实时处理,更不会在嵌入式设备上使用。
因此这不是问题。
本书目录:目录I走进OpenCV101关于OpenCV-Python教程102在Windows上安装OpenCV-Python113在Fedora上安装OpenCV-Python12IIOpenCV中的Gui特性134图片134.1读入图像4.2显示图像4.3保存图像4.4总结一下5视频5.1用摄像头捕获视频5.2从文件中播放视频5.3保存视频6OpenCV中的绘图函数6.1画线6.2画矩形6.3画圆6.4画椭圆6.5画多边形6.6在图片上添加文字7把鼠标当画笔7.1简单演示7.2高级一点的示例8用滑动条做调色板8.1代码示例III核心操作9图像的基础操作9.1获取并修改像素值9.2获取图像属性9.3图像ROI9.4拆分及合并图像通道9.5为图像扩边(填充)10图像上的算术运算10.1图像加法10.2图像混合10.3按位运算11程序性能检测及优化11.1使用OpenCV检测程序效率11.2OpenCV中的默认优化11.3在IPython中检测程序效率11.4更多IPython的魔法命令11.5效率优化技术12OpenCV中的数学工具IVOpenCV中的图像处理13颜色空间转换5413.1转换颜色空间13.2物体跟踪13.3怎样找到要跟踪对象的HSV值?14几何变换14.1扩展缩放14.2平移14.3旋转14.4仿射变换14.5透视变换15图像阈值15.1简单阈值15.2自适应阈值15.3Otsu’s二值化15.4Otsu’s二值化是如何工作的?16图像平滑16.1平均16.2高斯模糊16.3中值模糊16.4双边滤波17形态学转换17.1腐蚀17.2膨胀17.3开运算17.4闭运算17.5形态学梯度17.6礼帽17.7黑帽17.8形态学操作之间的关系18图像梯度18.1Sobel算子和Scharr算子8718.2Laplacian算子19Canny边缘检测19.1原理19.1.1噪声去除19.1.2计算图像梯度19.1.3非极大值抑制19.1.4滞后阈值19.2OpenCV中的Canny边界检测20图像金字塔9420.1原理21OpenCV中的轮廓22直方图23图像变换24模板匹配25Hough直线变换26Hough圆环变换27分水岭算法图像分割28使用GrabCut算法进行交互式前景提取29理解图像特征30Harris角点检测31Shi-Tomasi角点检测&适合于跟踪的图像特征32介绍SIFT(Scale-InvariantFeatureTransform)33介绍SURF(Speeded-UpRobustFeatures)34角点检测的FAST算法35BRIEF(BinaryRobustIndependentElementaryFeatures)36.1OpenCV中的ORB算法37特征匹配38使用特征匹配和单应性查找对象39Meanshift和Camshift40.3OpenCV中的Lucas-Kanade光流41背景减除23841.1基础42摄像机标定43姿势估计44对极几何(EpipolarGeometry)45立体图像中的深度地图25945.1基础46K近邻(k-NearestNeighbour)47支持向量机48K值聚类49图像去噪50图像修补51使用Haar分类器进行面部检测
2025/12/10 3:40:07 4.85MB python opencv
1
文章地址:基于边界的模板匹配的原理及算法实现http://blog.csdn.net/huixingshao/article/details/45560643
2025/12/8 20:37:31 140KB 边界模板匹配
1
用matlab来进行数字识别可以用神经网络的方法,但是也可以用模板匹配的方法
2025/11/16 16:05:09 1.71MB 数字识别
1
基于边缘的模板匹配参考文献不同该参考文章实现了Canny算法本身。
将创建渐变模板的操作插入其中。
这里的实现是不同的。
首先使用Canny算法查找边缘。
然后遍历边缘以创建渐变模板。
这很慢,但是代码更少(使用EmguCV的Canny)注意使用条件编译符号“FAST”查看更快但不稳定的结果预习图书馆棱镜EmguCV其他资讯
2025/10/9 14:46:37 1.66MB algorithm emgucv matching-algorithm AlgorithmC#
1
多种方法实现0-910个手写数字的识别,包括模板匹配法、贝叶斯分类器、神经网络、奖惩算法、势函数法。
方法很全的。
1
这是模板匹配sad方法的matlab程序
2025/6/24 19:08:49 783B template matching
1
介绍了基于DSP的条码图像实时识别系统,对原图像进行预处理后,运用模板匹配法进行图像区域查找,在原图像上分割出条码区域。
DSP的强大运算功能克服了模板匹配法计算量大的缺点;
DSP控制还具有电路简单、可靠、应用灵活等特性。
2025/6/19 4:30:27 103KB
1
共 72 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡