混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的混合高斯模型,用在模式识别上面的
1
模式识别-中科院-黄庆明-视频教程(视频+PPT+算法+相关基础知识)包含:1、19节课的视频教程;
2、配套的9个PPT;
3、配套的若干个算法解析;
4、相关基础知识介绍。
2025/12/5 7:52:04 17.59MB 模式识别 模式分类 视频教程 中科院
1
有效地数字特征提取算法模式识别中的手写数字识别
2025/11/23 20:05:37 738KB 手写体
1
对电机绝缘系统的典型放电脉冲采用二维谱图提取的放电指纹特征,用支持向量机方法来识别不同的放电类型.识剐结果令人满意,表明了支持向量机适于局部放电的识剐,对改善局部放电在线监测系统的性能以及该项技术的实用化起到了一定作用.
2025/11/15 10:24:39 260KB 支持向量机
1
随着计算能力、存储、网络的高速发展,人类积累的数据量正以指数速度增长。
对于这些数据,人们迫切希望从中提取出隐藏其中的有用信息,更需要发现更深层次的规律,对决策,商务应用提供更有效的支持。
为了满足这种需求,数据挖掘技术的得到了长足的发展,而分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。
本文主要侧重数据挖掘中分类算法的效果的对比,通过简单的实验(采用开源的数据挖掘工具-Weka)来验证不同的分类算法的效果,帮助数据挖掘新手认识不同的分类算法的特点,并且掌握开源数据挖掘工具的使用。
分类算法是解决分类问题的方法,是数据挖掘、机器学习和模式识别中一个重要的研究领域。
分类算法通过对已知类别训
2025/11/1 2:56:47 464KB 数据挖掘-分类算法比较
1
用于matlab模式识别的SNV算法,可用于NI的labview的可视化编程
2025/10/20 2:51:33 17KB SNV matlab 算法
1
资料来源:《模式识别快报》,30(2),第180-186页,2009。
597KB 研究论文
1
这是人工智能导论课的一些优秀实验报告(产生式系统实验报告,模糊推理系统实验,遗传算法实验一实验报告,基于神经网络的模式识别实验报告)
2025/10/11 2:57:22 721KB 实验报告
1
标题中的“何凯明去雾算法matalab源代码,可直接运行”指的是采用何凯明博士提出的图像去雾算法,并且提供了相应的Matlab实现,可以直接运行。
何凯明是计算机视觉领域的知名专家,他的去雾算法在图像处理中具有重要地位,常用于改善因大气散射导致的图像模糊问题。
在图像处理中,去雾算法是一种恢复图像清晰度的技术,尤其对于户外拍摄或低能见度条件下的照片尤为关键。
何凯明的去雾算法主要基于物理模型,假设大气层对光的散射可以用一个全局的透射率(transmissionmap)来描述。
这个算法通过分析图像的暗通道特性,估计透射率,并结合全局和局部信息来恢复图像的清晰度。
描述中提到“何凯明博士的图像去雾算法源代码,经调试可直接运行处理模糊图片”,这意味着你将获得一份已经过调试、可以直接在Matlab环境中运行的代码。
这对于学习和研究图像处理技术的人员来说是非常有价值的资源。
你可以直接使用这些代码来处理你的模糊图片,无需从零开始编写算法。
在Matlab中实现图像去雾算法,通常会涉及到以下几个关键步骤:1.**暗通道预处理**:找到图像中最暗的部分,这部分通常是由于雾的影响造成的,可以用来估计大气散射。
2.**透射率估计**:根据暗通道特性,估算出图像中每个像素点的透射率。
3.**大气光计算**:分析图像全局亮度来估计大气光,这是影响图像去雾效果的关键因素。
4.**恢复清晰图像**:利用透射率和大气光信息,通过物理模型对图像进行反卷积,恢复清晰图像。
标签“图像去雾算法”明确了这个压缩包的主要内容是关于图像去雾的算法实现。
文件名称“cvpr09defog(matlab)”可能表明这个算法是在2009年的计算机视觉与模式识别会议(CVPR)上发表的,而“defog”直接对应了去雾这一功能,表示这是用于去雾的代码。
这个资源对于学习图像处理,尤其是对去雾算法感兴趣的开发者或研究人员非常有帮助。
通过研究和实践这个源代码,不仅可以深入了解何凯明的去雾算法,还可以提升在Matlab中的编程能力,为自己的项目或研究提供强大的工具支持。
2025/9/28 13:24:28 226KB 图像去雾
1
国科大模式识别与机器学习2016-2017试卷带答案
2025/9/18 22:56:50 530KB 国科大 模式识别 机器学习 黄庆明
1
共 269 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡