糖尿病临床数据集(10万行)用于预测建模和健康分析的100000糖尿病数据集关于数据集详细的数据集,包括100000人的健康和人口统计数据,旨在促进糖尿病相关研究和预测建模。
该数据集包括性别、年龄、地点、种族、高血压、心脏病、吸烟史、BMI、HbA1c水平、血糖水平和糖尿病状态等信息。
数据集用例该数据集可用于各种分析和机器学习目的,例如:预测建模:根据人口统计和健康相关特征构建模型来预测糖尿病的可能性。
健康分析:分析不同健康指标(如BMI、HbA1c水平)与糖尿病之间的相关性。
人口统计学研究:检查糖尿病在不同人口群体和地点的分布。
公共卫生研究:识别糖尿病的风险因素,并针对高危人群进行干预。
临床研究:研究高血压等合并症与糖尿病合并心脏病之间的关系。
潜力分析描述性统计:总结数据集,了解特征的中心趋势和分散性。
相关性分析:识别特征之间的关系。
分类模型:使用机器学习算法将个体分类为糖尿病患者或非糖尿病患者。
趋势分析:分析多年来的趋势,看看糖尿
2025/10/12 12:35:16 1.14MB dataset
1
通过模块化的编程思想,运用Tensorflow搭建的全连接神经网络,代码包括5个文件,分别为generateds.py;forward.py;backward.py;test.py;appMnist.py,分别对应生成数据集,前向传播,反向传播,测试模型,运用模型做预测的功能
2025/9/29 10:46:38 14KB python 神经网络 Tensor
1
基于AR、MA、ARIMA模型的自回归移动平均销售预测算法,纯JAVA开发,亲测可运行可进行计算,可使用与各种预测场景。
2025/8/18 11:19:11 17KB 预测 ARMA ARIMA
1
mo_3.m_lbp特征提取,fitcecoc训练svm模型,predict预测,人脸分类。
使用fitcecoc函数训练一个多分类的SVM模型,使用predict函数利用训练出的模型对测试数据进行预测,将得到的类标预测值与测试数据真实的类标进行比较,计算测试数据中被正确分类的样本所占的比例。
2025/8/4 5:45:50 3KB matlab 人脸分类 fitcecoc predict
1
贝叶斯动态模型及其预测
2025/7/2 13:58:02 9.11MB 贝叶斯
1
包含所有课后习题答案,非常详尽!《时间序列分析及应用(R语言)(原书第2版)》以易于理解的方式讲述了时间序列模型及其应用,内容包括趋势、平稳时间序列模型、非平稳时间序列模型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差模型、谱分析入门、谱估计和门限模型。
对所有的思想和方法,都用真实数据集和模拟数据集进行了说明。
  《时间序列分析及应用(R语言)(原书第2版)》的一大特点是采用R语言来作图和分析数据,书中的所有图表和实证结果都是用R命令得到的。
作者还为《时间序列分析及应用(R语言)(原书第2版)》制作了大量新增或增强的-函数。
《时间序列分析及应用(R语言)(原书第2版)》的另一特点是包含很多有用的附录.例如,回顾了有关期望、方差、协方差、相关系数等概念.筒述了条件期望的性质以及最小均方误差预测等内容,这些附录有利于关心技术细节的读者深入了解相关内容。
2025/6/3 12:31:42 2.16MB 习题 答案 时间序列 R语言
1
【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。
它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。
然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。
【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。
在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。
主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。
【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。
它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。
在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。
【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。
通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。
预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。
MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。
【风力发电预测】RBF神经网络同样适用于风力发电量的预测。
通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。
总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。
通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。
此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
1
AR模型,采用PYTHON预测股票开盘价数据。
2025/2/14 18:41:17 116KB AR 股票预测
1
自己编写的基于状态空间模型的预测控制程序,参考了钱积新的《预测控制》。
语言为MATLAB
2024/12/28 16:54:32 105KB 状态空间模型 预测控制 MATLAB MPC
1
本文对中国中短期、长期的人口作了预测。
第一,首先,作为已知的条件(输入)的统计数据都是离散的,如某某年各个年龄的女性生育率、死亡率、性别比等;
第二,作为结果输出人们希望得到的数据也是离散的,例如:2010年、2020年、2050年…的人口总数、各个人口总数、人口的年龄分布等;
第三,与其用数值的方法求解连续模型,不如直接建立离散模型,也就是所谓的双线型模型,本文就是利用双线型模型解决了问题。
通过Matlab进行编程求解,我们得到未来中短期和长期的市区,城镇,乡村的各项人口指标及其各自的发展趋势。
若控制总和生育率不超过1.8,则中国总人口将在2015到2020年达到最大值,约为14.5亿,之后开始下降,在2050年将低于12亿。
中国人口平均年龄和老龄化指数均随时间持续增长,意味着劳动力负担将加重。
且城市的平均年龄和老龄化指数均高于城镇和乡村,意味着城市的生活水平和医疗水平相对于镇,乡较高。
最后我们对该双线型模型进行了评价,并给出了控制人口增长的一些建议。
1
共 50 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡