(带有端点检测的语音录音程序),端点检测程序采用ETSI鲁棒端点检测算法,该程序可以只录说话语音!
2026/1/11 10:07:22 108KB 端点检测 语音输入 录音
1
经典的社团检测算法Louvain的python实现,学习社团检测必学的代码。
2025/12/13 21:19:36 22KB 社团检测 经典算法 python实现
1
本文详细介绍了在GoogleEarthEngine(GEE)中提取水体边界的方法和步骤。
首先,需要选择合适的卫星影像数据,如Landsat或Sentinel系列。
其次,通过水体指数法(如NDWI和MNDWI)增强水体信息,并设置合适的阈值提取水体。
接着,使用边缘检测算法(如Canny或Sobel)获取精确边界。
最后,进行后续处理以优化结果。
文章还提供了一个简化的GEE代码示例,展示了如何使用NDWI指数和阈值法提取水体边界。
整个过程涉及数据选择、指数计算、阈值提取、边缘检测和后续处理,通过合理调整参数和方法可获得准确的水体边界信息。
在当今世界,遥感技术与地理信息系统(GIS)在环境监测、资源管理和各种地球科学研究领域中发挥着巨大作用。
GoogleEarthEngine(GEE)作为一款强大的云平台工具,为这些研究提供了便捷的途径,尤其在水体边界提取方面,GEE提供了操作方便、计算高效的优势,使得复杂的数据处理过程变得简单快捷。
利用GEE平台获取遥感影像数据是水体边界提取的第一步。
通常,研究者倾向于选择多时相、多光谱的卫星数据,例如Landsat或Sentinel系列。
这些数据源具有较高的空间分辨率和较短的重访周期,能够满足不同时间尺度的水体变化监测需求。
获取数据后,研究者需通过一系列图像处理技术来提取水体信息。
水体指数法是遥感影像水体信息提取的常用方法,它通过特定算法计算每个像元的水体指数值,该值可以用来区分水体和非水体区域。
常用的水体指数包括归一化差异水体指数(NDWI)和改进型归一化差异水体指数(MNDWI)。
这些指数通过反映水体在近红外波段的低反射率和在绿光波段的高反射率特性,将水体和其他地物有效区分。
在实际操作中,研究者需要根据具体应用场景选择合适的水体指数,并通过实验确定最佳阈值来提取水体边界。
提取出的水体边界往往需要进一步的处理来优化结果。
边缘检测算法,如Canny或Sobel算法,能够帮助识别和提取水体的轮廓线。
这些算法通过分析影像中亮度的梯度变化来确定边界的位置,其效果受到多种因素影响,包括所选算法的特性和影像质量等。
为了确保水体边界的准确性,后续处理工作至关重要。
这包括影像预处理、滤波、平滑以及可能的目视检查等。
预处理步骤主要是为了减少噪声干扰和改善影像质量,例如进行大气校正、云和云影去除等。
滤波和平滑操作有助于消除边缘检测过程中产生的毛刺和凹凸不平。
在实际应用中,研究者还需结合实际水体的形态特征和地理知识,对提取结果进行修正和补充,以确保水体边界的准确度。
文章中提到的GEE代码示例,简化了整个提取过程,向用户展示了如何使用NDWI指数和阈值法来提取水体边界。
这不仅有助于理解整个提取过程,而且便于用户在实际工作中根据自己的数据进行相应的调整和应用。
此外,考虑到遥感数据的多源性和多样性,软件开发人员也在不断地完善和更新GEE平台的相关软件包。
这些软件包集成了各种常用的遥感影像处理功能,使得用户无需从头编写复杂的代码,就能在平台上直接进行水体边界提取等操作。
这大大降低了用户的技术门槛,提高了工作效率。
在GEE平台中,提取水体边界是一套系统的工程,它涉及到影像数据的获取、水体指数的计算、阈值的设定、边缘检测算法的应用以及后续处理的优化等多个环节。
这些环节相互关联,每个环节的精准度都直接影响着最终结果的准确度。
随着遥感技术的不断进步和GEE平台的持续优化,提取水体边界的方法将变得更加高效和精确。
2025/12/5 22:44:52 6KB 软件开发 源码
1
这个压缩包里共包括两个源代码,分别是训练算法,实际分类检测算法,主要是利用BP神经网络来分类。
训练算法的原理可以直接参考,实际分类检测就是利用训练好的BP神经网络参数来进行分类。
我的BP网络结构是3层,783结构。
2025/11/5 18:07:08 31.97MB BP 分类 神经网络
1
基于adaboost人脸识别算法的MAtlab程序。
用hog提取特征值。
实现人脸识别。
2025/11/5 6:01:39 3.37MB 人脸检测
1
采用精确背景补偿,实现动态背景下动态目标检测,通过KNN匹配、比率筛选、对称约束三层筛选提取良好匹配点对,结合自适应外点滤除算法,实现对复杂环境的精确补偿。
2025/10/28 13:51:16 14KB opencv
1
噪声环境中基于HMM模型的语音信号端点检测方法强噪声环境下语音信号端点检测方法研究带噪语音端点检测方法的研究基于倒谱特征的带噪语音端点检测语音信号端点检测算法研究
2025/10/21 14:23:22 7.77MB 端点检测 语音处理
1
matlab程序,包括3个文件:mseries.m编写了一个产生m序列的函数;
mud.m用来比较传统单用户检测、线性解相关多用户检测、最小均方误差多用户检测的误码率;
mud_plot比较后并画出误码率-信噪比曲线。
2025/10/9 6:13:05 3KB cdma
1
利用八个方向的sobel边缘检测,其中为防止灰度值溢出对灰度值进行一个扩大和缩放的过程,可以检测出八个方向的灰度梯度值,检测出的边缘更加平缓连续,有兴趣的可以了解一下。
2025/9/26 22:19:13 64KB sobel 边缘检测 matlab
1
基于卷积神经网络的目标检测算法,夏源,张洪刚,本文是基于卷积神经网络的目标检测学习算法,与传统的物体检测算法不同,基于深度学习的目标检测算法,可以通过从海量数据中自动
2025/9/20 9:54:12 791KB 模式识别
1
共 217 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡