误差反向传播(Backpropagation,简称BP)是深度学习领域中最常见的训练人工神经网络(Artificial Neural Network,ANN)的算法。
它主要用于调整网络中权重和偏置,以最小化预测结果与实际值之间的误差。
在本项目中,我们看到的是如何利用BP算法构建一个两层神经网络来识别MNIST手写数字数据集。
MNIST数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0到9的手写数字。
BP算法通过迭代过程,对每个样本进行前向传播计算预测结果,并使用梯度下降优化方法更新权重,以提高模型在训练集上的表现。
文件"bp_two_layer_net.py"可能包含了实现BP算法的主体代码,它定义了网络结构,包括输入层、隐藏层和输出层。
"net_layer.py"可能是定义神经网络层的模块,包括前向传播和反向传播的函数。
"train_bp_two_neuralnet.py"很可能是训练脚本,调用前面的网络和训练数据,执行多次迭代以优化权重。
"buy_orange_apple.py"、"layer_naive.py"、"gradient_check.py"和"buy_apple.py"这四个文件的名称看起来与主题不太直接相关,但它们可能是辅助代码或者示例程序。
"buy_orange_apple.py"可能是一个简单的决策问题,用于帮助理解基本的逻辑操作;
"layer_naive.py"可能包含了一个基础的神经网络层实现,没有使用高级库;
"gradient_check.py"可能是用来验证反向传播计算梯度正确性的工具,这对于调试深度学习模型至关重要;
而"buy_apple.py"可能是另一个类似的小示例,用于教学或练习目的。
在BP算法中,计算图的概念很重要。
计算图将计算过程表示为一系列节点和边,节点代表操作,边代表数据。
在反向传播过程中,通过计算图的反向遍历,可以高效地计算出每个参数对损失函数的影响,从而更新参数。
在深度学习中,神经网络的优化通常依赖于梯度下降算法,它根据梯度的方向和大小来更新权重。
对于大型网络,通常采用随机梯度下降(Stochastic Gradient Descent, SGD)或其变种,如动量SGD、Adam等,以提高训练速度和避免局部最优。
总结来说,这个项目涉及了误差反向传播算法在神经网络中的应用,特别是在解决MNIST手写数字识别问题上的实践。
通过理解和实现这些文件,我们可以深入理解BP算法的工作原理,以及如何在实际问题中构建和训练神经网络。
同时,它也展示了计算图和梯度检查在深度学习模型开发中的关键作用。
2025/6/15 20:24:19 5KB
1
这是一个可以手工设置步长的matlab对梯度下降算法的演示,可以看到每次迭代到的点,非常直观的观看梯度下降算法的工作原理
1
梯度下降算法代码及详细解释(非常易懂)Matlab代码,有详细图文解释,适合小白,全面介绍算法原理和公式推导
2025/4/10 13:36:02 2KB 梯度下降
1
本文概括总结了梯度下降算法的内容,给出了详细的收敛性证明,复杂度分析以及随机梯度下降法,动量梯度下降法等经典的梯度下降算法,个人原创作品
2024/12/22 21:45:11 57KB 梯度下降
1
随机并行梯度下降算法(SPGD)是一种基于直接性能指标优化的相位控制方法,在自适应光学中有较好的适用性。
该算法主要包含增益系数和随机扰动幅度两个可变参数,其取值对算法收敛性有很大的影响。
对双边SPGD算法实现收敛时参数的取值要求进行研究,结合算法原理分析了算法参数的取值范围,并通过大量仿真实验找出所有使双边SPGD算法收敛的增益系数和随机扰动幅度值;得到随机扰动幅度的取值下限,理论和仿真分析了下限存在的原因及取值;在相干合成中存在相位噪声,研究了不同相位校正器参数的情况下可使算法收敛的参数的取值范围。
1
报道了一种基于偏振锁相的自适应非线偏光-线偏光的产生方法。
将激光器输出的非保偏光分成两束偏振态相互垂直的线偏光,基于偏振相干合成的原理,利用基于随机并行梯度下降算法的相位调制器将两个偏振态的光束的相位差锁相到mπ,合成输出的光束即为高消光比的线偏光。
理论上,建立了该方法的数学模型,并分析了各种因素对输出消光比和转换效率的影响。
实验上,利用空间结构的光路,搭建了相应的实验系统,实现了非线偏激光到线偏振光的自适应偏振转换,获得输出激光偏振度为93.5%,转换效率为88%的线偏振激光输出。
2024/7/19 9:44:36 2.78MB 物理光学 非线偏光 线偏光 偏振锁相
1
自己编写的随机梯度下降算法,附上房价预测数据集,感兴趣的可以看看
2024/3/5 13:11:14 17KB 随机梯度下降 matlab
1
这是一个matlab对梯度下降的实现,模拟的是x^2+y^2最小值的取得
1
程序利用pythonnumpy和matplotlib库实现了简单的梯度下降算法并对其进行可视化。
程序通过简单的可视化过程解释了梯度下降的原理,供大家学习参考。
注:并不是反向传播的实现,而是对梯度下降原理的解释,请根据需要自行参考。
1
用动量梯度下降算法训练BP网络使用的主要函数如下:NEWFF——生成一个新的前向神经网络TRAIN——对BP神经网络进行训练SIM——对BP神经网络进行仿真
2023/10/4 2:54:19 890B matlab bp 动量梯度下降
1
共 14 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡