使用matlab实现id3决策树算法,给出使用方法及举例,并附带相关测试集合。
2024/12/30 19:41:20 13KB 决策树 id3 matlab 源码
1
python利用pandas实现用决策树算法预测NBA获胜球队,2013-2014赛季的成绩作为训练集
2024/11/22 0:56:57 76KB PYTHON pandas
1
决策树算法,决策树算法,决策树算法,决策树算法,决策树算法,决策树算法,决策树算法,决策树算法,决策树算法,决策树算法,决策树算法,决策树算法
2024/11/19 5:12:46 157KB 决策树
1
前言第1章 绪论第2章 算法复杂度与问题的下界2.1 算法的时间复杂度2.2 最好、平均和最坏情况的算法分析2.3 问题的下界2.4 排序的最坏情况下界2.5 堆排序:在最坏情况下最优的排序算法2.6 排序的平均情况下界2.7 通过神谕改进下界2.8 通过问题转换求下界2.9 注释与参考2.10 进一步的阅读资料习题第3章 贪心法3.1 生成最小生成树的Kruka1算法3.2 生成最小生成树的Prim算法3.3 单源最短路径问题3.4 二路归并问题3.5 用贪心法解决最小圈基问题3.6 用贪心法解决2终端一对多问题3.7 用贪心法解决1螺旋多边形最小合作警卫问题3.8 实验结果3.9 注释与参考3.10 进一步的阅读资料习题第4章 分治策略4.1 求2维极大点问题4.2 最近点对问题4.3 凸包问题4.4 用分冶策略构造Voronoi图4.5 voronoi图的应用4.6 快速傅里叶变换4.7 实验结果4.8 注释与参考4.9 进一步的阅读资料习题第5章 树搜索策略5.1 广度优先搜索5.2 深度优先搜索5.3 爬山法5.4 最佳优先搜素策略5.5 分支限界策略5.6 用分支限界策略解决人员分配问题5.7 用分支限界策略解决旅行商优化问题5.8 用分支限界策略解决O,1背包问题5.9 用分支限界方法解决作业调度问题5.10 A*算法5.11 用特殊的A*算法解决通道路线问题5.12 用A*算法解决线性分块编码译码问题5.13 实验结果5.14 注释与参考5.15 进一步的阅读资料习题第6章 剪枝搜索方法6.1 方法概述6.2 选择问题6.3 两变量线性规划6.4 圆心问题6.5 实验结果6.6 注释与参考6.7 进一步的闷读瓷料习题弟7章 动态规划方法7.1 资源配置问题7.2 最长公共f序列问题7.3 2序列比对问题7.4 RNA最大碱基对匹配问题7.5 0,1背包问题7.6 最优二卫树问题7.7 树的带权完垒支配问题7.8 树的带权单步图边的搜索问题7.9 用动态规划方法解决1螺旋多边形m守卫路由问题7.10 实验结果7.11 注释与参考7.12 进一步的阅读资料习题第8章 NP完全性理论8.1 关十NP完垒性理论的非形式化讨论8.2 判定问题8.3 可满足性问题8.4 NP问题8.5 库克定理8.6 NP完全问题8.7 证明NP完全性的例子8.8 2可满足性问题8.9 注释与参考8.10 进一步的阅读资料习题第9章 近似算法9.1 顶点覆盖问题的近似算珐9.2 欧几里得旅行商问题的近似算法9.3 特殊瓶颈旅行商问题的近似算珐9.4 特殊瓶颈加权K供应商问题的近似算法9.5 装箱问题的近似算法9.6 直线m中心问题的最优近似算法9.7 多序列比对问题的近似算珐9.8 对换排序问题的2近似算法9.9 多项式时间近似方案9.10 最小路径代价生成树问题的2近似算法9.11 最小路径代价生成树问题的Pns9.12 NP0完全性9.13 注释与参考9.14 进一步的阅读资料习题第10章 分摊分析10.1 使用势能函数的例子10.2 斜堆的分摊分析10.3 Av1树的分摊分析10.4 自组织顺序检索启发式方法的分摊分析10.5 配对堆及其分摊分析10.6 不相交集合并算法的分摊分析10.7 一些磁盘调度算法的分摊分析10.8 实验结果10.9 注释与参考10.10 进步的阅读资料习题第11章 随机算法11.1 解决最近点对问题的随机算珐11.2 随机最近点对问题的平均性能11.3 素数测试的随机算法11.4 模式匹配的随机算法11.5 交互证明的随机算法11.6 最小生成树的随机线性时间算法11.7 注释与参考11.8 进一步的阅读资料习题第12章 在线算法12.1 用贪心法解决在线欧几里得生成树问题12.2 在线K服务员问题及解决定义在平面树上该问题的贪心算法12.3 基于平衡策略的在线穿越障碍算法12.4 用补偿策略求解在线二分匹配问题12.5 用适中策略解决在线m台机器调度问题12.6 基于排除策略的三个计算几何问题的在线算法12.7 基于随机策略的在线生成树算法12.8 注释与参考12.
2024/11/10 12:04:19 12.76MB 算法
1
数据结构遍历二叉树算法(前序、中序、后序),C语言版程序(附完成版实验报告),完全可运,供大家参考。
1
利用计算机断层扫描技术获取了泡沫镍的重建结构,将蒙特卡罗法与八叉树算法结合进行泡沫镍孔尺度辐射传递建模,分析了八叉树算法对辐射传递计算的加速作用。
结果表明,采用八叉树算法的辐射特性计算值与未采用时相比,最大相对误差小于1‰。
在最优空间深度范围内,空间深度越大和模型面元越多,计算的加速效果越明显。
2024/7/17 9:05:22 6.19MB 表面光学 辐射 计算效率 八叉树算
1
把多幅BMP图片生成GIF,快慢可控制。
支持带调色板的位图(如16色、256色等),也支持真彩色位图(16位、24位、32位)。
采用8叉树算法为真彩色位图生成调色板,效果较好。
生成GIF的算法是我自己写的。
2024/6/24 19:26:38 41KB 动画GIF 八叉树 VC C++
1
以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或randomforest也是常以其为基础的决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序无序,nodeimpurity对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度对于回归问题,我们用方差Variance来表示无序程度,方差越大,说明数据间差异越大用于表示,由父节点划分后得到子节点,所带来的impurity的下降,即有序性的增益下面直接看个regression的例子,分类的case,差不多,还是比较简单的,由于是回归,所以impurity的定义为variancema
2024/3/22 19:16:07 137KB SparkMLlib-DecisionTree源码分析
1
地形渲染的动态LOD四叉树算法,读者应该熟悉递归程序设计,以及基本的VCOpenGL编程.
2024/3/6 17:39:40 2.88MB Terrian
1
1.C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2.K-means算法:是一种聚类算法。
3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中4.Apriori:是一种最有影响的挖掘布尔关联规则频繁项集的算法。
5.EM:最大期望值法。
6.pagerank:是google算法的重要内容。
7.Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。
8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。
9.NaiveBayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(NaiveBayes)10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝
2024/1/25 9:25:40 626KB 数据
1
共 46 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡