该数据是完整的BIO标注语料,可用于深度学习机器学习模型训练,分为训练集、测试集以及验证集。
2024/1/13 15:46:20 1.82MB BIO标注 深度学习 训练预料
1
对关系抽取技术研讨概况进行总结。
在回顾关系抽取发展历史的基础上,将关系抽取研讨划分为两个阶段:面向特定领域的关系抽取研讨和面向开放互联网文本的关系抽取研讨。
在分析相关文献的基础上,总结出两个研讨阶段的技术路线:面向特定领域的关系抽取技术以基于标注语料的机器学习方法为主;面向开放互联网文本的关系抽取则根据不同任务需要,采取基于启发式规则的方法或者基于背景知识库实例的机器学习方法。
2019/1/6 23:35:30 427KB paper
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡