首页
熊猫办公下载
文件下载
根据地址查询经纬度
登录 / 注册
一级分类:
安全技术
存储
操作系统
服务器应用
行业
课程资源
开发技术
考试认证
数据库
网络技术
信息化
移动开发
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
二级分类:
用深度卷积神经网络方法识别无序蛋白中短的无序结合区域
分子识别特征(MoRF)是内在无序蛋白(IDP)的关键功能区域,它们在细胞的分子相互作用网络中起重要作用,并与许多严重的人类疾病有关。
鉴定MoRF对于IDP的功能研究和药物设计都是必不可少的。
本研究采用人工智能的前沿机器学习方法,为改进MoRFs预测开发了强大的模型。
我们提出了一种名为enDCNNMoRF(基于集成深度卷积神经网络的MoRF预测器)的方法。
它结合了利用不同特征的两个独立的深度卷积神经网络(DCNN)分类器的结果。
首先,DCNNMoRF1使用位置特定评分矩阵(PSSM)和22种氨基酸相关因子来描述蛋白质序列。
第二种是DCNNMoRF2,它使用PSSM和13种氨基酸索引来描述蛋白质序列。
对于两个单一分类器,都采用了具有新颖的二维注意机制的DCNN,并添加了平均策略以进一步处理每个DCNN模型的输出概率。
最后,enDCNNMoRF通过对两个模型的最终得分进行平均来组合这两个模型。
当与应用于相同数据集的其他知名工具进行比较时,新提出的方法的准确性可与最新方法相媲美。
可以通过http://vivace.bi.a.utokyo.ac.jp:8008/fang
2025/10/29 10:38:37
1.56MB
研究论文
1
糖尿病数据集diabetes.csv(全)
糖尿病数据集"diabetes.csv"是一个广泛用于统计分析和机器学习任务的数据集,特别是针对深度学习的应用。
这个数据集包含了大量关于糖尿病患者的医疗记录,旨在帮助研究者们预测糖尿病的发展趋势或者评估疾病管理策略的效果。
下面我们将深入探讨该数据集中的关键知识点。
1.数据集结构:通常,CSV(CommaSeparatedValues)文件是一种存储表格数据的格式,每一行代表一个观测值,列则对应不同的特征或变量。
在这个糖尿病数据集中,每一行可能代表一个患者在特定时间点的健康状况。
2.特征详解:-年龄(Age):患者年龄,对于疾病发展有显著影响。
-性别(Sex):患者性别,男性和女性可能面临不同的糖尿病风险。
-BMI(BodyMassIndex):身体质量指数,是衡量体重与身高比例的一个指标,与糖尿病风险相关。
-血压(BloodPressure):血压水平,高血压是糖尿病并发症的重要因素。
-葡萄糖(Glucose):血液中的葡萄糖浓度,直接影响糖尿病的诊断。
-胆固醇(Cholesterol):血液中的胆固醇含量,高胆固醇可能加剧糖尿病并发症。
-心电图(ECG):心电图结果,可以反映心脏健康状况,可能影响糖尿病的整体管理。
-尿蛋白(UrineProtein):尿液中的蛋白质含量,异常可能表明肾脏受损,常见于糖尿病并发症。
-甲状腺刺激激素(TSH):甲状腺功能的指标,甲状腺问题可能与糖尿病有关联。
-以及其他可能的医疗指标和历史数据。
3.目标变量:数据集可能包含一个目标变量,例如“糖尿病进展”或“并发症发生”,用于预测模型的训练和验证。
这个变量可能是二元的(如无/有并发症)或连续的(如疾病严重程度评分)。
4.数据预处理:在使用数据集之前,通常需要进行数据清洗,处理缺失值、异常值,以及可能的分类变量编码。
此外,为了适应深度学习模型,可能需要对数值特征进行标准化或归一化。
5.模型构建:在深度学习中,可以使用各种神经网络架构,如卷积神经网络(CNN)用于特征提取,循环神经网络(RNN)处理时间序列数据,或者全连接网络(FCN)处理一般的数据。
更先进的模型如长短时记忆网络(LSTM)或门控循环单元(GRU)也能用于捕捉患者健康状况随时间变化的模式。
6.训练与评估:模型的训练通常涉及反向传播和优化算法(如梯度下降或Adam)。
评估指标可能包括准确率、召回率、F1分数、AUC-ROC曲线等,具体取决于任务的性质。
7.隐私与伦理:在处理这类个人健康数据时,必须遵守严格的隐私保护规定,确保数据脱敏且匿名化,以保护患者隐私。
8.预测与解释:模型预测的结果需要解释,以便医生和患者理解并采取相应行动。
可解释性机器学习方法如局部可解释性模型(LIME)和SHAP值可以提供洞察模型决策背后的特征重要性。
"diabetes.csv"数据集为糖尿病研究提供了一个宝贵的资源,通过深度学习方法,我们可以挖掘其中的潜在规律,提高疾病预测的准确性,并为患者提供更好的健康管理建议。
在实际应用中,要充分利用数据集,同时确保数据安全和合规性。
2025/10/12 17:01:14
9KB
数据集
1
高斯过程回归代码
一种机器学习方法,可以用于分类和回归
2025/9/16 22:06:17
815KB
机器学习
高斯过程回归
1
基于深度学习的图像检索研究
深度学习(DeepLearning)是近年来提出的一种利用具有多个隐层的深度神经网络(DeepNeuralNetwork,DNN)完成学习任务的机器学习方法。
其实质是,通过构建具有多个隐层的神经网络模型并使用大量的训练数据来学习得到更有用的特征,进而提升模型预测或分类的准确性。
与以往的浅层神经网络的不同之处在于,深度学习主要强调了神经网络的深度(通常有大于1层的隐层),还突出了特征学习的重要性,从大数据中学习特征,这些特性可以刻画数据丰富的内在信息。
2025/1/19 7:51:09
10.13MB
深度学习
图像识别
1
python处理UCI鲍鱼数据集
利用python处理UCI鲍鱼年龄预测数据,运用了经典回归、决策树、随机森林、SVM等十余种机器学习方法,附有数据集以及详细python代码。
2025/1/11 9:05:16
156KB
python
UCI数据
鲍鱼年龄预测
abalone
1
Milan_Sonka_-_Image_Processing_Analysis_and_Machine_Vision,_3rd
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是图像处理、分析和机器视觉领域的一本经典教材,第3版提供了高清英文原版的PDF版本。
这本书深入浅出地探讨了图像处理的基础理论和应用,是计算机视觉、电子工程、生物医学工程等相关专业学生和研究人员的重要参考书。
我们要理解图像处理的基本概念。
图像处理涉及到对数字图像进行各种操作,以改善其质量、提取有用信息或进行分析。
这包括图像增强、去噪、分割和复原等技术。
例如,图像增强通过调整亮度、对比度来优化视觉效果;
去噪则通过滤波器去除图像中的噪声;
图像分割将图像区域划分为不同的对象或类别,便于进一步分析。
机器视觉则是图像处理的一个重要应用领域,它使计算机能够“看”并理解图像。
在《MilanSonka》一书中,读者可以学习到如何构建和应用机器视觉系统。
这包括特征检测(如边缘检测、角点检测)、模板匹配、模式识别和物体识别等技术。
这些技术在自动驾驶、无人机导航、工业自动化和医疗诊断等领域有着广泛应用。
此外,书中还涵盖了与机器学习相关的主题,如监督学习和无监督学习,它们在图像分类、目标检测和图像识别任务中至关重要。
支持向量机(SVM)、神经网络、深度学习框架(如卷积神经网络CNN)等现代机器学习方法也是书中讨论的重点。
深度学习,尤其是深度卷积网络,已经在图像处理和计算机视觉领域取得了突破性进展,极大地推动了人脸识别、图像生成和自动驾驶等技术的发展。
书中还涉及到了图像分析,这是对图像内容进行理解和解释的过程。
这包括图像理解、场景分析和行为识别。
图像理解需要从图像中提取高级语义信息,比如识别出图像中的物体、场景和事件。
场景分析则涉及环境的理解,例如确定图像中的背景、前景和物体之间的关系。
行为识别则关注动态图像中的动作和活动,如行人跟踪和运动分析。
书中还涵盖了实际应用中的算法实现和评估方法,这对于任何从事图像处理和机器视觉研究的人来说都是必不可少的知识。
实验部分通常会介绍如何使用编程语言(如MATLAB或Python)实现所讨论的算法,并提供数据集和代码示例。
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是一部全面覆盖图像处理、分析和机器视觉的教材,无论你是初学者还是经验丰富的专业人士,都能从中受益匪浅。
通过深入学习这本书,你可以掌握图像处理的基本原理,理解机器视觉的核心技术,并了解如何将这些知识应用于实际项目中。
2024/12/18 9:29:46
26.8MB
图像处理
1
mri-superresolution:CS1682020年Spring最终项目代码-源码
超分辨率AlexZhao,SisiJia和RickyHo编写的CS1682020年Spring最终项目“评估超分辨率MRI的机器学习方法”的代码。
感谢部分代码的原始作者@movehand(movehand/raisr),@icpm(icpm/super-resolution)和@t5eng(t5eng/fsrcnn_pytorch)。
可在找到用于训练,验证和测试的IXI数据集。
BSDS300数据集可在找到。
归功于Lüsebrink等。
对于找到的7T数据集。
2024/12/6 18:29:21
314.31MB
Python
1
hypelcnn:具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架
HypeLCNN概述该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中)使用Tensorflow1.x开发(在1.10至1.15版上测试)。
该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。
主要特点:支持超参数估计基于插件的神经网络实现(通过NNModel接口)基于插件的数据集集成(通过DataLoader接口)培训的数据有效实现(基于内存的有效/基于内存/记录的)能够在经典机器学习方法中使用数据集集成神经网络的培训,分类和指标集成胶囊网络和神经网络的示例实现基于CPU/GPU/TPU(进行中)的培训基于GAN的数据增强器集成交叉折叠验证支持源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践注意:数据集文件太
2024/10/9 21:46:46
128KB
deep-neural-networks
tensorflow
fusion
lidar
1
强化学习的自动驾驶控制技术研究进展
自动驾驶车辆的本质是轮式移动机器人,是一个集模式识别、环境感知、规划决策和智能控制等功能于一体的综合系统。
人工智能和机器学习领域的进步极大推动了自动驾驶技术的发展。
当前主流的机器学习方法分为:监督学习、非监督学习和强化学习3种。
强化学习方法更适用于复杂交通场景下自动驾驶系统决策和控制的智能处理,有利于提高自动驾驶的舒适性和安全性。
2024/9/10 5:12:16
1.67MB
强化学习
自动驾驶
1
CS229T/STAT231:StatisticalLearningTheory(Winter2016)
CS229T/STAT231是由斯坦福大学开设的统计学习理论课程,着重于对机器学习算法统计特性的理论理解,涉及机器学习算法何时起作用和原因、如何形式化算法从数据中学习的含义、如何使用数学思维来设计更好的机器学习方法等基本课题
2024/9/4 5:56:31
1.18MB
CS229T
Statistical
1
共 25 条记录
首页
上一页
下一页
尾页
钉钉无人值守自动打卡脚本 永不迟到的神器 安卓和苹果教程
New!
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03
15KB
钉钉
钉钉打卡
个人信息
点我去登录or注册
|
微信登录
一言
热门下载
双系统双频伪距单点定位程序
Docker构建tomcat镜像jdk1.8+tomcat9.zip
数据库系统概论第五版
中科院考博英语2009-2018年试题及答案解析(十五套436面).pdf
飘逸传世引擎源代码
CNS2_CN_VW_P0095D_0332.7z
R9390系列BIOS修改和风扇调速工具
ENVI去云补丁Haze_tool文件及其使用说明和安装方法
KEPServerEXV6.7.zip
新升级版TP5商城小程序源码+公众号版+h5一整套源码V3.zip
StimulsoftReports2020.1.1License.rar
几何画板课件350套.zip
ABAQUS金属非稳态和稳态切削过程的模拟分析_张东进.pdf
HTML5+CSS3中文参考手册(3手册)chm版中文参考手册打包
vue项目demo(asp.netmvc5+vue2.5)
最新下载
evtsys32位+64位
Evtsys4.5164位、32位及本人安装心得
Evtsys_4.5.1_64-Bit.zip
Evtsys-4.5.1-32位和64位-Bit-LP服务器日志收集
卷积神经网络经典代码matlab、
matlab信噪比的计算
获取其它进程中TreeView或ListView的内容
ReactDeveloperToolsChrome插件官方版
支持WIN7的node.js最后版本
Struts2漏洞检查工具2018版V2.1.exe
Vitamio5.2.3完整版
Java项目实训调查报告
阿里Java开发手册-2020版.pdf
基于T-S模型的模糊神经网络
立体匹配图片集(数量不多)
其他资源
AMIBIOS修正工具+LOGO+81398163816781688169网卡LOM
完整的DIV+CSS的企业站模板+官方需求300元
电源变换(可调)TPS63070电路
仿射密码加密解密
计算机网络天津理工大学
AIS基础知识及其国际标准的发展.pdf
手机销售系统-源代码及数据库
部编人教版二年级下册语文第1-8单元识字表看拼音写生字.pdf
LABVIEW入门与实战开发100例
华中科技大学软件学院软件体系结构课程设计—售票系统
faiss搜索代码
adc0809ADC+proteus电压采集数码管显示
teraterm帮助手册
arc_reactjs-源码
基于位置控制、速度控制、位移控制解码永磁同步电机磁旋转编码器
helloword.doc
双H桥电机驱动L298N芯片AD集成库(原理图库+PCB库)文件.zip
Matlab仿真ACO-OFDM信号发送与接收
c++钩子技术实现文件监控
ComputerVisionwithPython3(2017)