卷积神经网络的数字识别训练代码python3.5准确率98%保存模型画板手写测试字体颜色和背景相差大就行字体不能太细有编译代码可以看到数字样本图片
2024/8/14 6:30:24 7KB 机器学习 数字识别 手写测试
1
id3算法创建决策树,用matplotlib库实现决策树可视化(机器学习入门)
2024/8/13 1:10:08 5KB 机器学习 可视化 matplotlib 决策树
1
机器学习入门到精通50天,python代码编写,1.数据预处理2.简单线性回归3.多元线性回归4.逻辑回归5.k近邻法(k-NN)6.支持向量机(SVM)7.决策树8.随机森林9.K-均值聚类10.层次聚类
2024/7/23 1:49:07 83B python 机器学习 逻辑回归 决策树
1
机器学习入门第一件事手写数字识别所需数据集,解压后直接使用
2024/6/26 16:46:44 11.06MB 机器学习
1
机器学习入门KNN算法实现的手写数字识别基本上照搬了http://lib.csdn.net/article/opencv/30167的代码,只是改了一点bug和增加了一点功能输入就是直接在一个512*512大小的白色画布上画黑线,然后转化为01矩阵,用knn算法找训练数据中最相近的k个,现在应该是可以对所有字符进行训练和识别,只是训练数据中还只有数字而已,想识别更多更精确的话就需要自己多跑代码多写几百次,现在基本上一个数字写10次左右准确率就挺高了,并且每次识别的时候会将此次识别的数字和01矩阵存入训练数据文件夹中,增加以后识别的正确率,识别错了的话需要输入正确答案来扩充训练数据
2023/9/21 3:58:52 15KB 机器学习 KNN
1
数据科学正在快速发展成所有行业开发人员和管理人员的关键技能,它看起来也十分有趣。
但是,它非常复杂,虽有许多工程和分析工具助力,却也难清楚掌握现在做得对不对,哪里是不是有陷阱。
在本文中,我们解释了如何发挥数据科学的作用,理解哪里需要它,哪里不需要它,以及如何令它为你产生价值,如何从先行者那里获得有用的经验。
这是“GettingAHandleOnDataScience”系统文章中的一部分,你可以通过此RSS予以订阅。
大多数类型的机器学习项目归根结底通常是使用监督式学习方式进行分类或回归。
特征工程是大多数机器学习过程中的一个关键组成部分。
像K均值(K-means)之类无人监督式的学习算法能用于你事前
2023/8/22 14:53:45 372KB 机器学习入门
1
BAT算法工程师深入详细地讲解Softmax,带你轻松入门机器学习!
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡