基本思想:首先任意选取K个聚类中心,按最小距离原则将各模式分配到K类的某一类;
不断计算聚类中心和调整各模式的类别,最终使各模式到其判属类别中心的距离平方之和最小。
2025/6/15 20:26:02 2KB k均值 聚类分析 二维
1
在游戏开发中,碰撞检测是不可或缺的一个环节,尤其是在实时性要求高的Moba(多人在线战术竞技)游戏中。
基于距离的碰撞算法是一种优化过的碰撞检测方法,尤其适合于地图区域相对较小的游戏场景。
这类算法通常比传统的矩形或圆形碰撞检测更为精确,能够处理更复杂的形状,并且计算效率相对较高。
**基于距离的算法基础**基于距离的碰撞检测通常涉及到距离场(DistanceField)的概念。
距离场是一个数学结构,其中每个点表示到最近物体表面的距离。
它可以是离散的,如基于像素的,也可以是连续的,如通过高斯积分得到的。
这种数据结构可以用来快速判断两个物体是否相交,只需要计算它们的距离场之间的最小距离。
**Unity中的实现**Unity引擎提供了一套强大的工具来支持游戏开发,包括碰撞检测。
在Unity中,我们可以利用Shader语言(如CG或HLSL)来创建自定义的距离场,并将其应用于游戏对象的材质。
这使得在运行时能够高效地计算物体间的距离,进而进行碰撞检测。
**优化与性能**基于距离的碰撞检测算法的一大优势在于其性能。
相比于传统的包围盒(AABB)或碰撞球(OBB)检测,它能更快地识别出不相交的物体,因为
2025/6/12 16:53:06 5.76MB
1
最小距离分类的matlab代码
2025/5/8 11:24:03 2KB 最小距离分类
1
1读取BIP、BIL、BSQ文件2均值滤波中值滤波3边缘信息提取4DFTFFT5主成分变换6缨帽变换7图像分类(K—均值分类、最小距离分类、最大似然分类)8大气校正反射率地表温度的反演9Habib教授课程总结
2025/4/6 0:02:02 3.42MB 图像处理 Matlab代码
1
matlab最小距离最小距离分类,是指求出未知类别向量到要识别各类别代表向量中心点的距离,将未知类别向量归属于距离最小一类的一种图像分类方法。
最小距离分类法是分类器里面最基本的一种分类方法,它是通过求出未知类别向量X到事先已知的各类别(如A,B,C等等)中心向量的距离D,然后将待分类的向量X归结为这些距离中最小的那一类的分类方法。
2025/3/9 3:20:43 883B matlab 最小距离
1
用最大最小距离实现聚类的matlab函数,只要有样本就能实现了!!
2024/9/8 15:13:07 1KB matlab聚类
1
对Iris数据进行两个特征选取,共6种组合,计算类别可分性准则函数J值,得出最好的分类组合,画出各种组合的分布图;
2、使用前期作业里面的程序、对6种组合分别使用不同方法进行基于120个训练样本30个测试样本的学习误差和测试计算,方法包括:最小距离法(均值为代表点)、最近邻法、k近邻法(k取3、5...)等;
2024/6/20 13:07:29 2KB 最小距离法
1
第1章绪论1.1合成孔径雷达概况1.2发展历程1.2.1国外SAR发展历程1.2.2我国SAR发展历程1.3发展趋势1.4主要应用1.4.1军事领域1.4.2民用领域1.5内容安排第2章合成孔径雷达2.1概述2.2SAR成像基本原理2.2.1距离向分辨率与脉冲压缩技术2.2.2方位向分辨率与合成孔径原理2.2.3点目标信号回波模型2.2.4SAR成像处理与算法2.3SAR成像的几何特性2.3.1斜距图像的比例失真2.3.2透视收缩与顶底位移2.3.3雷达阴影2.3.4雷达视差与立体观察第3章雷达目标电磁散射计算3.1概述3.1.1电磁散射基本计算方法3.1.2严格的经典解法3.1.3近似求解方法3.2等效电磁流计算3.2.1等效电磁流奇异性的消除3.2.2等效电磁流的分析与计算3.3多次散射的计算3.3.1几何/物理光学混合算法3.3.2存在多重散射的条件和遮挡关系的判断3.3.3几何光学/等效电磁流混合算法3.3.4GO/PO混合方法的应用3.4腔体结构电磁散射RCS计算3.4.1复射线近轴近似电磁散射算法3.4.2计算实例3.5复杂目标电磁散射的计算3.5.1复杂目标几何建模3.5.2复杂目标电磁散射混合计算第4章合成孔径雷达图像特征分析4.1概述4.2SAR图像辐射特征4.2.1SAR图像回波强度的概率分布4.2.2辐射分辨率4.3SAR图像噪声特征4.4SAR图像目标几何特征4.4.1点目标4.4.2线目标4.4.3面目标4.5SAR图像灰度统计特征4.5.1幅度特征4.5.2直方图特征4.5.3统计特征4.6SAR图像纹理特征4.6.1方向差分特征4.6.2灰度共现特征4.6.3小波纹理能量特征第5章合成孔径雷达图像分割5.1概述5.2阈值分割法5.2.1基于遗传算法的二维最大熵阈值分割法5.2.2二维模糊熵阈值分割法5.2.3双阈值分割算法5.3基于马尔可夫随机场模型的分割法5.3.1吉布斯MEF分割模型5.3.2吉布斯MRF分割算法5.3.3多尺度MRF图像分割5.4基于多尺度几何分析的分割法5.4.1基于Contourlet变换的SAR图像分割5.4.2基于Wedgelet变换的SAR图像分割5.5分割评价方法5.5.1分割质量评价5.5.2适用情况分析第6章合成孔径雷达图像目标分类6.1概述6.1.1分类流程6.1.2评价标准6.2概率密度函数估计6.2.1单-密度函数6.2.2混合密度函数6.2.3有限混合密度函数的逼近能力6.3参数估计6.3.1极大似然估计6.3.2EM算法6.4最小距离分类法6.5最大后验概率分类法6.6支持向量机分类法6.6.1支持向量机原理6.6.2支持向量机分类法6.7隐马尔可夫优化分类法6.7.1HMM原理6.7.2HMOC模型第7章合成孔径雷达图像目标识别7.1概述7.1.1识别方法7.1.2自动目标识别系统7.2基于电磁特性的目标识别7.3典型目标识别7.3.1道路识别7.3.2机场识别7.3.3MSTAR坦克识别第8章合成孔径雷达图像融合8.1概述8.1.1图像融合概念8.1.2融合效果评价8.2SAR图像与可见光图像融合8.2.1提升小波变换8.2.2基于提升小波变换区域统计特性的融合算法8.3SAR图像与多光谱图像融合8.3.1主成分分析方法8.3.2基于主成分分析的SAR与多光谱图像融合8.4多波段SAR图像融合8.4.1基于atrous算法方向滤波器组的多波段SAR图像灰度融合8.4.2多波段SAR图像伪彩色融合第9章合成孔径雷达图像压缩9.1概述9.1.1第一代和第二代压缩技术9.1.2多尺度方向分析技术9.2SAR图像压缩中的典型特征9.2.1纹理特征9.2.2变换域系数统计特征9.3SAR图像Non-SWMDA压缩方法9.3.1不可分离小波的提升实现9.3.2基于块分割的二叉树编码方案设计9.4SAR图像压缩效果评价9.4.1保真度准则9.4.2特征衡量标准
2023/10/25 11:11:44 43.18MB 合成孔径雷达 雷达成像 SAR成像
1
可以进行遥感影像的读取,然后对其进行添加了最小距离的分类方法以及NDVI的计算、bp分类、ppi端元提取,代码的整体系很强,可以进行随意的添加以及修改。
2023/9/10 21:15:32 31.68MB NDVI 遥感影像读取 最小距离分类 bp分类
1
C#利用最小距离法实现图像简易监督分类全代码,
1
共 12 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡