各标定步骤实现方法1计算标靶平面与图像平面之间的映射矩阵计算标靶平面与图像平面之间的映射矩阵,计算映射矩阵时不考虑摄像机的成像模型,只是根据平面标靶坐标点和对应的图像坐标点的数据,利用最小二乘方法计算得到[[ix]].2求解摄像机参数矩阵由计算得到的标靶平面和图像平面的映射矩阵得到与摄像机内部参数相关的基本方程关系,求解方程得到摄像机内部参数,考虑镜头的畸变模型,将上述解方程获得的内部参数作为初值,进行非线性优化搜索,从而计算出所有参数的准确值[[x]].3求解左右两摄像机之间的相对位置关系设双目视觉系统左右摄像机的外部参数分别为Rl,Tl,与Rr,Tr,,即Rl,Tl表示左摄像机与世界坐标系的相对位置,Rr,Tr表示右摄像机与世界坐标系的相对位置[[xi]]。
因此,对于空间任意一点,如果在世界坐标系、左摄像机坐标系和右摄像机坐标系中的坐标分别为Xw,,Xl,Xr,则有:Xl=RlXw+Tl;Xr=RrXw+Tr.因此,两台摄像机之间的相对几何关系可以由下式表示R=RrRl-1;T=Tr-RrRl-1Tl在实际标定过程中,由标定靶对两台摄像机同时进行摄像标定,以分别获得两台摄像机的内、外参数,从而不仅可以标定出摄像机的内部参数,还可以同时标定出双目视觉系统的结构参数[xii]。
由单摄像机标定过程可以知道,标定靶每变换一个位置就可以得到一组摄像机外参数:Rr,Tr,与Rl,Tl,因此,由公式R=RrRl-1;T=Tr-RrRl-1Tl,可以得到一组结构参数R和T
2025/7/16 11:53:45 33KB opencv
1
宽带波束形成器,最小二乘方法,也可适用于窄带波束形成器
2024/8/30 1:57:19 2KB 最小二乘
1
用一般的最小二乘方法和SVD-TLS方法估计观测数据的ARMA模型的AR参数,并估计正弦波的频率。
1
压缩包中包含的具体内容:对给定数据中的6个不同场景图像,进行全景图拼接操作,具体要求如下:(1) 寻找关键点,获取关键点的位置和尺度信息(DoG检测子已由KeypointDetect文件夹中的detect_features_DoG.m文件实现;
请参照该算子,自行编写程序实现Harris-Laplacian检测子)。
(2) 在每一幅图像中,对每个关键点提取待拼接图像的SIFT描述子(编辑SIFTDescriptor.m文件实现该操作,运行EvaluateSIFTDescriptor.m文件检查实现结果)。
(3) 比较来自两幅不同图像的SIFT描述子,寻找匹配关键点(编辑SIFTSimpleMatcher.m文件计算两幅图像SIFT描述子间的Euclidean距离,实现该操作,运行EvaluateSIFTMatcher.m文件检查实现结果)。
(4) 基于图像中的匹配关键点,对两幅图像进行配准。
请分别采用最小二乘方法(编辑ComputeAffineMatrix.m文件实现该操作,运行EvaluateAffineMatrix.m文件检查实现结果)和RANSAC方法估计两幅图像间的变换矩阵(编辑RANSACFit.m文件中的ComputeError()函数实现该操作,运行TransformationTester.m文件检查实现结果)。
(5) 基于变换矩阵,对其中一幅图像进行变换处理,将其与另一幅图像进行拼接。
(6) 对同一场景的多幅图像进行上述操作,实现场景的全景图拼接(编辑MultipleStitch.m文件中的makeTransformToReferenceFrame函数实现该操作)。
可以运行StitchTester.m查看拼接结果。
(7) 请比较DoG检测子和Harris-Laplacian检测子的实验结果。
图像拼接的效果对实验数据中的几个场景效果不同,请分析原因。
已经实现这些功能,并且编译运行均不报错!
2024/3/17 0:39:05 19.5MB MATLAB 国科大 图像拼接 图像处理
1
现代信号谱分析·目录第1章 基本概念1.1 引言1.2 确定信号的能量谱密度1.3 随机信号的功率谱密度1.4 功率谱密度的性质1.5 谱估计问题1.6 补充内容1.7 习题第2章 非参数化方法2.1引言2.2 周期图和相关图方法2.3 用FFT计算周期图2.4 周期图法的性质2.5 Blackman-Tukey方法2.6 窗函数设计中需考虑的问题2.7 其他改进的周期图方法2.8 补充内容2.9 习题第3章 有理谱估计的参数化方法3.1引言3.2 有理谱信号3.3ARMA过程的协方差结构3.4AR信号3.5Yule-Walker方程的阶递推解法3.6MA信号3.7ARMA信号3.8 多变量ARMA信号3.9 补充内容3.10 习题第4章 线谱估计的参数化方法4.1引言4.2 噪声中的正弦信号模型4.3 非线性最小二乘方法4.4 高阶Yule-Walker方法4.5 Pisarenko和MUSIC方法4.6 最小模方法4.7 ESPRIT方法4.8 前向-后向方法4.9 补充内容4.10 习题第5章 滤波器组方法5.1 引言5.2 周期图的滤波器组解释5.3 改进的滤波器组方法5.4 Capon方法5.5 用滤波器组进一步解释周期图5.6 补充内容5.7 习题第6章 空域方法6.1引言6.2 阵列模型6.3 非参数化方法6.4 参数化方法6.5 补充内容6.6 习题附录A 线性代数和矩阵分析工具附录B Cramer-Rao界分析工具附录C 模型阶数选择方法附录D 部分习题答案参考文献
2023/9/21 11:11:11 21.38MB 现代信号谱分析
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡