特征检测与匹配的目标是识别一个图像中的关键点与另一个图像中的对应点之间的配对。
在此实验中,你将编写代码以检测图像中的特征点(对于平移、旋转和照明具有一定的不变性),并在另一个图像中找到最佳匹配特征。
为了帮你可视化结果并调试程序,我们提供了一个用户界面,可以显示检测到的特征和最佳匹配。
我们还提供了一个示例ORB特征检测器,用于结果比较。
该实验有三个部分:特征检测、特征描述和特征匹配。
您所需要实现的所有代码都在features.py中。
2024/7/30 0:22:45 21.64MB 西电 计算机视觉 实验
1
英文词典数据集,包括了25万多个单词,用于开发、学习,单词最佳匹配算法中使用该词典进行搜索匹配单词。
1
为了减小运动估计算法的计算复杂度,提出了一种有效的三步搜索算法。
该算法采用多步搜索策略,根据运动矢量分布的中心偏移性及并行处理的思想,在最佳匹配点所在的区域使用菱形小模板代替原有的正方形小模板来进行精细搜索,以提高算法的搜索精度。
2024/5/17 2:41:08 92KB 运动矢量;块匹配;
1
本资源引见了二分图,二分图的最大匹配,二分图的完备匹配,二分图的最佳匹配。
以及引见了匈牙利算法,KM算法的步骤。
并且有详细的图解,方便理解。
2021/8/9 8:43:17 555KB 二分图PPT
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡