包含以上所有资料DDSAD9850AD9851原理图串行程序并行程序目录1DDS简介1.1产品简介1.2参考资料2DDS的基本概念2.1DDS概述2.2DDS工作原理2.3DDS有关名词解释3具体应用问题3.1DDS没有输出,怎么办3.2哪些DDS能直接用晶体提供时钟,哪些不能3.3Update更新信号如何控制?3.4DDS的扫频功能如何实现3.5DDS输出级滤波器如何设计3.6DDS发烫,是否正常3.7DDS对输入时钟有什么要求3.8AD9910的时钟输入需要注意什么?3.9DDS时钟输入,DAC输出能否使用单端模式?电路该如何接3.10DDS评估板上分别有2个变压器或2个巴伦(Balun)有什么用处3.11DDS评估板上端接电阻为50欧,为何变压器的参数是在75欧标定的?3.12ADT1-1WT的原副边是否可以互换使用3.13如何同步多片DDS芯片的输出3.14DDS输出端DAC为电流输出,怎么转换为电压,有什么限制3.15DDS的AGND,DGND应该怎样连接,接模拟地还是数字地3.16有些DDS评估板上的MC100LVEL16的用途是什么?3.17AD7008已经停产,有什么可以替代3.18如何确定DDS寄存器的值3.19DDS的评估板软件对操作系统有什么要求3.20DDS除了正弦波,还能产生别的波形么3.21用DDS有什么好处3.22ADI的DDS捷变频能力为多少3.23有无DDS的参考程序代码3.24如何使用DDS进行幅度调制3.25如何用AD5930来产生一个单频信号3.26为什么DDS输出的幅度会随频率的增加而减小3.27DDS输出电压的幅度如何计算3.28应该用什么样的仪器来调试DDS3.29输出杂散较大,怎么办
2026/1/11 13:47:53 7.15MB DDS AD9850 AD9851
1
提出了在完整三角晶格光子晶体中引入两线缺陷构成的耦合型波导结构。
通过分析谱带形对不同结构参数的依赖关系,在最优化的光子晶体耦合波导中,找到了一种独特的、群速近似为零的谱带。
通过对波导宽度的啁啾实现了不同频率光的色散补偿,最终得到了带宽为13.24nm、平均群折射率为28的宽带理想慢光,并进一步采用二维时域有限差分(FDTD)算法进行了验证。
数值分析结果表明,高斯脉冲在耦合波导中传输后的相对时域展宽低于10%。
2025/12/22 17:22:14 2.78MB 集成光学 光子晶体 耦合波导 色散补偿
1
250B石英晶体测试参数详解.doc
2025/11/17 2:08:25 42KB 250B、石英晶体
1
用有限元计算方法仿真了MgF2楔形腔中的色散情况,并研究半径、楔角大小、楔角位置三个参数对整个腔在通讯波段的色散影响。
通过从蓝失谐到红失谐的调谐过程,利用得到的色散曲线,根据Lugiato-Lefever方程和热偏移公式仿真孤子的频域和时域图。
并且研究了扫描速度、品质因子、泵浦功率等对孤子产生的影响。
在结合以往实验和理论基础的情况下,探讨了利用MgF2晶体腔产生孤子的一些重要参数。
数据结果对制备低反常色散MgF2楔形腔及在此腔中产生孤子梳具有指导意义。
2025/10/4 3:14:28 9.77MB 光学器件 回音壁模 光频梳 楔形腔
1
/********************************************主控芯片:STM32F767IGT6主频216Mhz晶体频率:HSE=25MhzSYSCLK=216Mhz模块型号:2.13寸墨水屏模块通讯方式:SPI串口通信函数功能:声明2.13寸墨水屏模块使用的函数与IO作者:苏夏雨授权:未经作者允许,禁止转载********************************************///定义模块头文件名称#ifndef__213PAPER_H#define__213PAPER_H//定义模块使用的引脚#defineCS(n){n?HAL_GPIO_WritePin(GPIOH,GPIO_PIN_4,GPIO_PIN_SET):HAL_GPIO_WritePin(GPIOH,GPIO_PIN_4,GPIO_PIN_RESET);}#defineDC(n){n?HAL_GPIO_WritePin(GPIOH,GPIO_PIN_3,GPIO_PIN_SET):HAL_GPIO_WritePin(GPIOH,GPIO_PIN_3,GPIO_PIN_RESET);}#defineDIN(n){n?HAL_GPIO_WritePin(GPIOH,GPIO_PIN_2,GPIO_PIN_SET):HAL_GPIO_WritePin(GPIOH,GPIO_PIN_2,GPIO_PIN_RESET);}#defineCLK(n){n?HAL_GPIO_WritePin(GPIOH,GPIO_PIN_5,GPIO_PIN_SET):HAL_GPIO_WritePin(GPIOH,GPIO_PIN_5,GPIO_PIN_RESET);}//声明需要使用的函数voidpaperinit(void);//墨水屏模块初始化voidpaperdisplay(void);//刷新一次墨水屏显示内容voidpapersetstring(unsignedcharcolor);//设置墨水屏显示内容//声明需要使用的数据//IMG2lcd设置参数:(单色、C语言数组、分辨率212*104、垂直扫描、自右至左扫描)
2025/9/23 5:27:33 5KB 2.13寸 墨水屏 驱动 函数库
1
Crystallography,VolumeC(国际晶体学表C卷)包含原子散射因子等,非常不错。
网上很难找到C卷。
此为前500页。
2025/8/18 18:05:15 6.79MB Crystallography Volume C 国际晶体学表
1
报道了利用周期极化铌酸锂晶体外腔谐振增强倍频技术获得波长分别为1560nm和780nm双色量子关联光场。
由于该量子关联系统的激光波长分别位于量子态传输波段与原子存储波段,可应用于研究实用化量子信息处理系统。
在利用谐振倍频获得10mW倍频光输出、倍频效率达45%的基础上,实测1560nm基频光与780nm倍频光的量子关联为1.2dB。
2025/8/13 12:10:14 1.13MB 非线性光 量子关联 谐振倍频 1560
1
XTAL晶体晶振封装LED灯LCD1602LCD12864模块AltiumAD元件库PCB封装库。
包括99个XTAL晶体晶振LEDLCD模块封装文件,均已测试应用过,可以直接应用到你的项目设计中。
1
垂直散度低的高效单横模光子能带晶体激光器
2025/7/4 8:38:20 798KB 研究论文
1

这份资料是宁夏长庆高级中学2020届高三物理上学期第一次月考试题,主要测试学生对高中物理基础知识的理解和应用能力。
试卷分为选择题和非选择题两部分,总分100分,考试时间为100分钟。
下面我们将针对试卷中的部分内容进行解析。
1. 热传递原理:题目指出甲物体向乙物体传递热量是因为甲的温度较高。
这体现了热力学的基本定律之一,热量总是从高温物体流向低温物体。
2. 分子动能的理解:题目中提到,温度相同时,不同物质的分子平均动能相同。
这是因为在一定温度下,所有物质的分子运动速度的平均值是相同的,而动能与分子的速度平方成正比。
3. 分子热运动:题目正确地指出了温度越高,悬浮微粒的布朗运动越剧烈,这是因为分子运动更活跃,对微粒的碰撞更频繁。
4. 阿伏加德罗常数的应用:题目通过阿伏加德罗常数、摩尔质量和密度计算了单位体积或质量的铜原子数目,揭示了微观世界与宏观世界的联系。
5. 冰变水的能量变化:冰在0℃变为水,体积减小,但温度不变,因此分子的平均动能不变,而这个过程中需要吸收热量,这部分热量转化为分子间的势能,使得分子间的相互作用力增强。
6. 晶体特性:晶体的特性包括规则的几何外形、各向异性(某些晶体)、固定的熔点。
题目中指出晶体熔化时吸收热量,但分子平均动能不变,说明是分子势能在增加。
7. 空气的干湿程度:人们感觉到的空气湿度实际上指的是相对湿度,即空气中水蒸气的实际压强与同温度下饱和水蒸气压强的比值。
8. 浸润与不浸润现象:鸭子羽毛不湿是因为毛细现象,细玻璃棒尖端变球形是表面张力的结果,粉笔吸墨水是浸润现象,而雨伞不漏水则是由于不浸润现象。
9. 热力学第一定律:气体对外做功100 J,同时吸收热量120 J,根据热力学第一定律,其内能增加了20 J。
10. 汽缸中的柴油燃烧:迅速向里推活塞可以压缩空气,提高空气温度,可能使柴油达到燃点。
11. 热力学第一定律的正负号:物体对外界做功W为负,吸热Q为正,内能增加ΔU为正,符合能量守恒。
12. 理想气体状态变化:理想气体在温度不变时体积膨胀,单位体积内的分子数目减少,但分子平均动能不变,分子速率的分布依然遵循麦克斯韦-玻尔兹曼分布。
13. 玻璃管中的水银柱:根据连通器原理,当左右两管水银柱静止时,中间管内水银柱高度等于两管高度之差的一半。
14. 气体实验定律图象:图a可能表示查理定律(压强与体积成反比,温度保持不变),图b表示玻意耳定律(压强与体积的乘积为常数,温度变化),图c可能表示查理定律,图d表示盖-吕萨克定律(体积与温度成正比,压强保持不变)。
15. 玻璃管中的气体:如果玻璃管粗细均匀,竖直放置,上部封闭,下部开口,那么当管子倾斜时,气体体积会随着水柱下降而增加,而气体压强会降低,这与玻意耳定律相符。
这些题目涵盖了热力学、分子动理论、气体定律、能量守恒等多个高中物理的核心知识点,旨在考察学生的综合理解和应用能力。
2025/6/18 10:33:43 143KB
1
共 131 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡