提出了一种可以实现同种或异种金属材料固态冶金结合的新型激光冲击点焊工艺。
实验中,采用Nd∶YAG激光器发出的脉冲激光驱动厚度为30μm的钛箔产生局部塑性变形,并以超高速撞击厚度为100μm的铝板以实现点焊连接。
当钛箔的飞行距离分别为0.3、0.6、0.9mm时,焊点中心的回弹区域面积依次减小,而结合区域面积依次增大。
采用冷镶嵌技术制样用来观察焊点的截面特征,发现了沿焊点直径方向振幅和周期变化的波形界面和平直型界面。
为研究激光冲击点焊对材料力学性能的影响,应用纳米压痕测试技术测量了垂直于焊接界面方向材料的显微硬度,结果表明焊接界面附近材料的硬度值明显提高。
此外,焊接试样的拉伸剪切测试结果表明,当复板和基板发生有效固态冶金结合时其连接强度较高,失效形式通常是焊点边缘破裂。
激光冲击点焊为厚度在微米级的异种金属箔板的点焊连结开辟了新途径。
2024/10/12 17:05:55 5.77MB 激光技术 激光冲击 飞行距离 焊接界面
1
根据GeC薄膜折射率可调的特点,采用磁控溅射技术,在Ge基底上沉积了不同折射率的GeC薄膜以及类金刚石(DLC)膜和红外双波段保护膜。
利用红外光谱仪测试了样品的红外透射光谱,利用偏光显微镜和显微硬度计测量了样品的维氏硬度。
结果表明,GeC,DLC以及红外双波段保护膜均能显著提高样品的显微硬度;
红外双波段保护膜在3.7~4.8μm和7.5~10.5μm波段范围内的平均透射率均高于94%,样品硬度高于单层GeC薄膜和DLC薄膜。
红外双波段薄膜样品通过了GJB2485-95规定的环境实验。
2023/11/2 14:36:01 1.52MB 薄膜 红外保护 双波段 GeC
1
利用6kW光纤激光器对1.5mm厚冷轧800MPa级双相钢进行激光拼焊试验,研究激光焊接接头的显微组织演变规律、显微组织对显微硬度及疲劳性能的影响规律。
结果表明,焊接接头主要包括焊缝区(WZ)、粗晶区(CGHAZ)、细晶区(FGHAZ)、混晶区(MGHAZ)和回火区(TZ),其中焊缝区和粗晶区显微组织均为马氏体,但焊缝区内的原始奥氏体晶界保留着柱状晶的生长形态,粗晶区内的原始奥氏体晶界呈多边形生长;
细晶区和混晶区均为铁素体和马氏体,但细晶区的显微组织更为精细;
回火区主要由铁素体和回火马氏体组成。
混晶区和回火区显微硬度均低于母材,共同组成了焊接接头的软化区。
由于软化区尺寸相对较窄(0.4mm)且硬度降低幅度低(~6.8%),拉伸断裂位置出现在母材。
在应力比为0.1的拉拉疲劳条件下,母材和焊接接头的疲劳极限分别为545MPa和475MPa,疲劳断裂未出现在软化区。
母材中的疲劳裂纹在铁素体与马氏体两相界面萌生并扩展;
而焊接接头中的疲劳裂纹则在焊缝中的奥氏体晶界上或马氏体板条内萌生,沿着焊缝中心处柱状原始奥氏体晶界的交汇处切断马氏体板条束扩展。
2023/8/14 11:37:40 28.66MB 激光技术 双相钢 激光焊接 显微硬度
1
采用激光熔覆技术在45#钢表面分别制备了Ni60A涂层及SiC/Ni60A复合涂层。
采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)仪对涂层进行了显微组织和物相分析,并测试了熔覆层的显微硬度和耐冲蚀磨损性能。
结果表明,在激光作用下,SiC由于具有较小的生成热容易溶解在合金涂层中。
熔覆层的物相主要由γ(Ni-Cr-Fe)固溶体及Fe7C3,Fe0.79C0.12Si0.09等化合物组成。
在固溶强化、第二相强化及细晶强化的共同作用下,SiC/Ni60A涂层的抗冲蚀性能显著提高,涂层的显微硬度也明显增加。
2023/6/7 18:40:39 874KB 激光技术 激光熔覆 SiC/Ni基
1
利用CO2激光对火焰喷涂制备的Ni-WC复合涂层进行了重熔实验,通过扫描电镜(SEM)观察了其重熔后表面形貌,测试了含有不同WC体积分数样品重熔前后的涂层显微硬度,并分析了WC含量对涂层组织及耐磨性的影响。
实验结果表明,火焰喷涂制备的涂层气孔随着WC颗粒含量增大而增多,经激光重熔后气孔明显减少;激光重熔后的涂层显微硬度比火焰喷涂的涂层显微硬度提高约20%,WC体积分数为6%时涂层显微硬度达到最大值;激光重熔处理后的涂层耐磨性随着WC含量的增加而增大,WC体积分数为6%时,其耐磨性达到最佳值。
2023/2/21 22:54:13 1.42MB 激光技术 火焰喷涂 激光重熔 耐磨性
1
在氩气辅助下,利用光纤激光水下切割1mm厚304不锈钢板。
通过切缝平均宽度研究激光功率、切割速度、水层厚度、水体条件等对切割效率及切割质量的影响规律。
宏观上,激光功率过低、切割速度过快、水层过厚等因素会降低激光切割效率和质量。
在模仿海洋环境的盐水中进行切割试验,水的高盐度和低温大大降低了切割效率。
微观上,熔化区、热影响区(HAZ)和基体的组织成分、显微硬度各异,熔化区边缘出现表面形核现象,熔化区晶胞尺寸随着激光能量密度增大而增大;
热影响区组织粗大,显微硬度低于基体与熔化区硬度。
熔化区边缘硬度达到242.8HV,局部氧化区域硬度高达963HV,是基体硬度的4.3倍;
熔化区中部硬度为165.1HV;
热影响区硬度为124.6HV,不锈钢基体硬度为223.4HV。
2023/1/23 18:56:12 16.11MB 激光技术 激光水下 微观组织 不锈钢
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡