ARMA模型(Auto-RegressiveandMovingAverageModel)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。
在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;
在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
2025/9/22 3:52:51 833B ARMA
1
《基于SPSS的数据分析(第2版)》一书深入浅出地介绍了如何利用SPSS这一强大的统计软件进行数据处理和分析。
薛薇作者在第三版中进一步更新了内容,确保读者能掌握最新的数据分析技术。
这本书是针对那些希望提升数据分析能力,尤其是SPSS操作技能的读者而编写的。
SPSS,全称StatisticalProductandServiceSolutions,是一款广泛应用于社会科学、健康科学、市场研究、教育等领域的统计分析软件。
它的用户界面友好,操作直观,使得非专业统计背景的用户也能轻松上手。
在书中的实例中,我们可以看到各种不同类型的数据文件,如:1.**WebData.mdb**:这可能是一个MicrosoftAccess数据库文件,用于存储网站访问或用户行为数据。
在SPSS中,可以通过ODBC(OpenDatabaseConnectivity)连接导入此类数据,进行网络行为分析,比如用户浏览习惯、点击流分析等。
2.**Telephone.sav**:这是一个SPSS的默认文件格式,包含调查问卷数据。
可能涉及电话调查结果,可以用于分析消费者态度、满意度或者市场趋势。
3.**K-Means.sav**:K-Means是聚类分析的一种,用于将数据集划分为不同的群组或类别。
此文件可能是已经进行了K-Means聚类后的数据,读者可以学习如何解读和解释聚类结果。
4.**BuyOrNot.sav**:这个名字暗示可能涉及购买决策数据,可以用于构建预测模型,比如逻辑回归,以预测顾客是否会购买某个产品。
5.**MBA.sav**:可能包含MBA项目申请人的信息,可以进行特征选择和多元统计分析,以理解哪些因素影响录取决策。
6.**Brand.sav**:品牌相关的数据,可能包括消费者对不同品牌的认知、偏好和忠诚度,适合做品牌影响力和市场份额分析。
7.**ExportApple.sav**:可能与苹果产品的出口数据有关,可以进行国际贸易分析,比如出口量、市场份额、国别分析等。
8.**Sequence.sav**:序列数据,可能用于事件序列分析或时间序列分析,揭示事件之间的顺序关系或时间上的变化模式。
9.**BankBalance.sav**:银行账户余额数据,适合进行财务数据分析,比如客户消费行为、储蓄习惯或信用评估。
10.**聚类分析.str**:Str文件是SPSS的系统文件,可能包含了聚类分析的设置和结果,读者可以学习不同聚类方法的应用和选择。
通过这些实际案例,读者将学习到如何导入不同格式的数据,进行数据清洗、探索性数据分析(EDA)、描述性统计、假设检验、回归分析、聚类分析以及更高级的建模技术。
此外,还会涉及到数据可视化,如图表制作,以及如何解读和报告分析结果。
对于想要提高数据分析技能的人来说,这本书和这些实例文件提供了丰富的实践机会。
2025/9/19 21:37:09 2.52MB SPSS 数据分析
1
论文讲述贝叶斯时间序列预测模型及其应用研究
2025/9/16 17:34:40 1.55MB 贝叶斯预测
1
本文主要讨论的是某商场的销售额问题,商场的销售额关系到商场的利润及盈亏。
本文是通过时间序列模型对某商场的销售额进行分析,通过该商场一年的销售额的分析,建立该问题的数学模型假设。
将该问题拟合成线性关系、二元函数关系、三元函数关系、七元函数关系和八元函数关系进行分析,根据所得模型得出结果。
当拟合的阶次越高时,所得的结果误差就越小。
所建立的数学模型可以对未知数据进行预测,为估算销售额提供了依据。
2025/9/9 8:16:04 193KB 二元函数 三元函数
1
采用mann-kendall法,对时间序列的趋势变化进行检验,研究时间序列的发展趋势。
2025/8/25 17:57:20 2KB mann-kendall 趋势检验
1
两个晚上学会eviews时间序列操作方法第一部分eviews基本操作第二部分上机实验
2025/8/22 19:03:56 2.51MB eviews 操作
1
C-C方法计算时间延迟和嵌入维数主程序:C_CMethod.m,C_CMethod_independent.m子函数:correlation_integral.m(计算关联积分)disjoint.m(将时间序列拆分成t个不相关的子序列)heaviside.m(计算时间序列的海维赛函数值)参考文献Nonlineardynamics,delaytimes,andembeddingwindows。
计算Lyapunov指数:largest_lyapunov_exponent.m(用吕金虎的方法计算最大Lyapunov指数)参考文献:基于Lyapunov指数改进算法的边坡位移预测。
lyapunov_wolf.m(用wolf方法计算最大Lyapunov指数)计算关联维数:G_P.m(G-P算法)混沌时间序列预测主函数MainPre_by_jiaquanyijie_1.m(该程序用加权一阶局域法对数据进行进行一步预测)MainPre_by_jiaquanyijie_n.m(该程序用加权一阶局域法对数据进行进行n步预测)MainPre_by_Lya_1.m(基于最大Lyapunov指数的一步预测)MainPre_by_Lya_n.m(基于最大Lyapunov指数的n步预测)nearest_point.m(计算最后一个相点的最近相点的位置及最短距离)子函数jiaquanyijie.m(该函数用加权一阶局域法(xx)、零级近似(yy)和基于零级近似的加权一阶局域法(zz)对时间数据进行一步预测)pre_by_lya.m(基于最大Lyapunov指数的预测方法)pre_by_lya_new.m(改进的基于最大Lyapunov指数的预测方法)
2025/8/19 3:36:29 669KB 混沌 算法
1
该代码是用于matlab,作为时间序列分析的,直接可用,需要输入的是已知数据及预测数据等等
2025/8/18 16:08:18 2KB ca
1
tensorflow下用LSTM网络进行时间序列预测,实时多变量预测以及对于未来数据的单变量预测。
2025/8/1 8:11:34 1.11MB LSTM 预测 时间序列 tensorflow
1
授课对象:这是一门数学课程,适合有志于转往大数据分析领域的非数学专业人士(例如IT人,业务人员等)补强数学基础,以更好地学习更高级的数据分析,数据挖掘,机器学习课程收获预期:可以大幅度提高学员的数学基础,使其学习其它大数据分析课程时觉得更加简单,得心应手课程内容:第1课面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表)第2课赌博设计:概率的基本概念,古典概型第3课每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性第4课啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布)&J.e3P:w6X2^;K*W1U&X第5课万事皆由分布掌握:多维随机变量及其分布4o7|%v%n9\"m4R)|第5课砖家的统计学:随机变量的期望,方差与协方差"s4@+n.v"I:V)`-u第6课上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布+j:W+V/n1_4Y)`/w+[第8课点数成金,从抽样推测规律之一:参数估计之点估计$v3^1V.H(t,G9b:U第9课点数成金,从抽样推测规律之二:参数估计之区间估计第10课对或错?告别拍脑袋决策:基于正态总体的假设检验第11课扔掉正态分布:秩和检验!s!G1w#i3P*]#e第12课预测未来的技术:回归分析,O%b!U)k4h#]$p第13课抓住表象背后那只手:方差分析第14课沿着时间轴前进,预测电子商务业绩:时间序列分析简介,X.n%b4~8PE9\+d第15课PageRank的背后:随机过程与马尔科夫链简介
2025/7/23 6:41:21 61B 大数据
1
共 248 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡