数据挖掘数据集leagues_NBA_2014_games_gamesleagues_NBA_2014_games_games
2025/6/27 5:54:19 10KB 数据挖掘 数据集
1
matlab实现ID3决策树代码,例程中使用西瓜数据集,运行decisionTree.m即可
2025/6/26 2:30:41 7KB matlab 模式识别 决策树
1
AggregationAggregationAggregation适合聚类使用!有多类簇
1
整个压缩文件有源码+数据集+运行环境+训练出的模型,项目讲解可以看下载后中的ppt,数据集是kaggle提供的数据集以及自己用爬虫爬取的数据集,去除了大部分老重复的图,就是做了一定筛选,有2400+抽烟图片,并全部标注。
2025/6/24 9:53:19 960.35MB 抽烟检测yolov4
1
该语料由电影评论组成,其中持肯定和否定态度的各1,000篇;
另外还有标注了褒贬极性的句子各5331句,标注了主客观标签的句子各5000句。
该语料可以被应用于各种粒度的,如词语、句子和篇章级情感分析研究中。
情感分析资源大全:http://blog.csdn.net/qq280929090/article/details/70838025
2025/6/24 8:26:31 101.19MB 情感分析
1
针对基于元数据或传统主题图的知识组织模式没有实现知识的多层次多粒度表示,以及知识融合过程中相似性算法准确性不高而影响融合质量的问题,结合全信息理论与扩展主题图结构特点及语义信息,提出了面向多源知识融合的扩展主题图相似性算法(ETMSC)和阈值选取的相关性、层次对应和实验确定三原则.该算法综合了语法、语义和语用的相似性,扩展了主题图元素间组成结构上的相似性,同时充分考虑了涵义及所处语境的相似性.主题图相似性的判别准则与阈值有关,阈值的确定与数据集相关.实验结果表明,ETMSC算法与单纯基于语法或语义的相似性算法相比,准确性提高了9.2%~11.1%.
2025/6/22 20:11:01 228KB 知识融合;主题图;相似性算法
1
天文笔记本iPython笔记本展示了NumPy,matplotlib和我们的宇宙入门简短版本:确保已安装所有适当的依赖项,然后为您的平台运行适当的安装脚本。
Linux安装/构建所需的依赖项。
除Python和virtualenv之外的大多数依赖项都是通过安装脚本自动安装的。
克隆或分叉此仓库。
运行setup.sh创建一个新的virtualenv,安装所有缺少的依赖项,并下载所需的数据集。
经过全面测试的Xubuntu12.10的说明位于INSTALL-xubuntu-12.10中。
视窗安装所需的依赖项。
有关详情,请参见下文。
克隆或分叉此仓库。
运行setup.bat以创建一个新的virtualenv,安装所有缺少的依赖项,并下载所需的数据集。
Windows依赖关系(简单方法)在Windows中获取所有依赖关系的最简单方法是使用专门用于科学计算的Pyt
2025/6/22 12:19:47 3.28MB JupyterNotebook
1
将爬虫爬下的数据进行异常值分析,然后将异常值删除后得到正常值数据集。
1
为了大家更好学习高光谱编程,讲一些常用的高光谱数据集上传,仅仅针对MATLAB用户,直接load就能使用。
2025/6/21 16:58:27 34.07MB 高光谱数据集
1

车牌识别分为车牌检测和车牌识别,车牌检测模型需要大量标注的车牌数据进行训练,提供数据集存在百度网盘,可以通过连接进行下载,已标注为VOC格式,可以直接拿来训练。
2025/6/20 1:32:50 67B
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡