这是日本稻田保写的一本书,本书主要介绍了振荡电路的设计与应用,类容包括基本振荡电路、RC方波振荡电路的设计、RC正弦波振荡电路的设计、高频LC振荡电路的设计、陶瓷与晶体振荡电路的设计,以及函数发生器的设计、电压控制振荡电路的设计、PLL频率合成器的设计、数字频率合成器的设计等等。
2024/8/9 1:08:31 19.88MB 震荡电路 稻叶保
1
本文介绍用89C51单片微机控制直接数字频率合成器(DDS)芯片AD9835设计的高精度多种信号发生器,着重讨论了AD9835基本工作原理、与89C51接口,单片微机控制系统的硬件结构及软件设计框图。
1
本系统由三角波信号发生器和三角波信号参数测试仪两部分构成。
信号发生器以FPGA为控制核心,基于直接数字频率合成原理,能够产生频率、幅度、占空比连续可调的三角波信号,频率范围1Hz~1MHz,幅度范围40mV~4V,占空比1%~99%。
三角波信号参数测试仪以等精度法实现了精度为10-6的三角波频率测量;
以数字峰值检波的方法实现了幅度测量,精度优于1%;
以多点求均值的方法降低了求取斜率的误差,精度优于1%。
2024/3/21 9:53:25 584KB 三角波 信号 参数测试仪
1
AD9832及其在高频测试仪中的应用DDS芯片AD9832的原理及应用DDS信号发生芯片AD9832_IcpdfCom数字式频率合成器──DDS数字式频率合成器锁相环路参数设计直接数字频率合成芯片AD9832原理及其典型应用设计直接数字式频率合成器AD9832与ADSP21065L接口设计及应用直接数字式频率合成器的杂波抑制度分析
2024/1/28 16:35:38 1.25MB DDS,AD9832,原理,应用
1
基于直接数字频率合成技术(DDS),采用AT89S51单片机实现对DDS集成芯片AD9852的控制,产生频率和幅度可控的正弦信号,重点介绍了硬件接口电路设计以及频率、幅度控制的关键技术。
2023/10/5 18:32:35 406KB 正弦信号发生器 DDS
1
一本好书,研究dds数字频率合成必读!内容简介《直接数字频率合成》共6章,比较全面、深入地讨论了DDS的理论与应用。
主要内容包括DDS的基本概念、相位累加器、正弦查表、D/A变换器的噪声分析;
拟周期脉冲删除;
级数展开、连分式展开;
DDS相位噪声和杂散产生的机理及其降低;
DDS与PLL的组合;
分数-N频率合成器原理;
低噪声微波频率合成器的设计原理;
新的DDS结构等。
《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;
抓住问题的主要方面,把理论与应用结合在一起;
可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中的有关人员学习参考。
3目录序言第1章直接数字频率合成原理1.1DDS的基本概念1.2相位累加器1.3正弦查表1.4D/A变换器1.4.1数字编码1.4.2输出波形1.5具有调制能力的DDS系统1.6逼近频率合成第2章DDS中的相位和杂散噪声2.1引言2.2矩形波输出2.2.1拟周期脉冲删除2.2.2基于修正的恩格尔级数展开的系统2.2.3基于连分式展开的系统2.2.4基于展开组合的系统2.2.5杂散信号2.3正弦波输出2.3.1量化输出正弦波的傅里叶分析2.3.2相位截断正弦波的频谱分析2.3.3正弦字的截断2.3.4背景杂散信号电平的估计2.3.5W和S之间的关系2.4D/A变换器的噪声分析2.4.1量化引起的信噪比2.4.2D/A变换器引起的非线性杂散信号2.4.3突发性尖脉冲2.5脉冲速率频率合成器的频谱第3章DDS中相位噪声和杂散信号的降低3.1DDS的噪声特性3.1.1不同电路的噪声特性3.1.2DDS的相位噪声3.2DDS中接近载波的噪声3.2.1DDS输出噪声的计算3.2.2接近载波噪声的理论基础3.2.3杂散频谱的估计3.2.4实验结果及讨论3.3输出滤波器3.4改进DDS电路的设计3.4.1降低ROM的容量3.4.2降低突发性尖脉冲的方法3.5DDS频谱性能的改进3.6DDS与PLL的组合3.6.1DDS与PLL组合合成器3.6.2十进制DDS的设计第4章分数-N频率合成器原理4.1FNPLL环路4.1.1FNPLL环路的组成4.1.2FNPLL环路的工作原理4.2FNPLL环路简化频率合成4.3使用FNPLL环路的频率合成器4.4DDS控制吞脉冲分数-N频率合成原理4.5DDS控制吞脉冲分数-N环路的杂散相位调制4.6双模式分频器4.7多级调制分数分频器4.7.1分数分频的新方法4.7.2具有∑-△结构的分数-N频率合成中的杂散信号4.7.3分数分频器的实现第5章低噪声微波频率合成器的设计原理5.1微波环路的基本框图5.2微波环路中的加性噪声5.3用环路滤波器改善输出噪声5.4微波频率合成举例5.4.1超低噪声微波频率合成器5.4.2雷达和通信系统中的低噪声频率合成器第6章新的DDS结构6.1混合DDS6.1.1混合DDS结构6.1.2800MHz混合DDS6.2DDS后接重复分频和混频器6.2.1总的要求6.2.25100结构作为偏移合成器6.2.3混频和分频链的前后端6.3综合技术结构6.4IIR滤波方法6.4.1IIR谐振器6.4.2用TMS320C30产生正弦波6.5复位方法6.5.1无稳定性控制的IIR滤波器6.5.2有稳定性控制的IIR滤波器6.5.3有稳定性控制和小□值的IIR滤波器6.5.4DCSW方法6.5.5IIR-ALT方法6.6实现与试验结果6.6.1数值输出6.6.2模拟输出附录附录A:拉普拉斯变换附录B:z变换附录C:DDS输出的傅里叶变换附录D:正交调制器相位误差的数字相位预矫正
2023/9/12 9:37:32 14.51MB dds 数字频率合成 白居宪
1
AD9910是一款内置14位DAC的直接数字频率合成器,支持高达1GPS采样速率。
AD9910采用高级DDS专利技术,在不牺牲性能的前提下可极大降低功耗。
DDS/DAC组合构成数字可编程的高频模拟输出频率合成器,能够在高达400MHz的频率下生成捷变正弦波形。
用户可以访问三个用于控制DDS的信号控制参数,包括:频率、相位与振幅。
该DDS利用32位累加器提供快速跳频和频率调谐分辨率。
在1GPS采样速率下,调谐分辨率约为0.23Hz。
这款DDS还实现了快速相位与幅度切换等许多功能。
2023/8/28 15:58:04 959KB AD9910
1
DDS数字频率合成器DDS数字频率合成器DDS数字频率合成器DDS数字频率合成器DDS数字频率合成器DDS数字频率合成器DDS数字频率合成器DDS数字频率合成器DDS数字频率合成器
2023/8/11 19:31:03 594KB DDS数字频率合成器
1
具体看博客:https://blog.csdn.net/qq_33231534/article/details/108424647DDS全称为直接数字频率合成(DirectDigitalSynthesis),其基本原理是在一个周期波形数据下,通过选取其中全部数据或抽样部分数据组成新的波形,由奈奎斯特采样定理可知,最低两个采样点就可以组成一个波形,但实际上最少需求4个点。
其原理框图如下
2022/10/9 16:49:48 22.08MB fpga verilog
1
AD9852数字频率合成器评估板AD原理图+PCB文件,ad设计的工程文件,包括原理图及PCB印制板图,可以用AltiumDesigner(AD)软件打开或修正,可作为你产品设计的参考。
1
共 11 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡