本系统由K型热电偶、温度传感器、高精度放大器、A/D转换器、AT89C51单片机、译码显示模块与报警电路等部分构成,根据热电偶中间温度定律,实现了具有热电偶冷端温度补偿功能的大范围高精度数字测温系统,而在测得温度超出某一范围时即启用报警电路进行超标报警。
文中提出了具体设计方案,讨论了热电偶测温的基本原理,进行了可行性论证。
由于利用了单片机及数字控制系统的优点,系统的各方面性能得到了显著的提高。
1
51单片机PID算法程序由51单片机组成的数字控制系统控制中,PID控制器是通过PID控制算法实现的。
51单片机通过AD对信号进行采集,变成数字信号,再在单片机中通过算法实现PID运算,再通过DA把控制量反馈回控制源。
从而实现对系统的伺服控制。
2024/5/10 19:48:24 58KB PID算法程序
1
这是基于FPGA的伺服系统数字控制技术的书籍作者:黄玉平,仲悦,郑再平资源有压缩密码见注释找不到密码的请留言留下邮箱
2024/3/28 12:17:25 134.83MB PFGA 伺服控制
1
在电网电压频率波动谐波含量较大的情况下。
硬件锁相很难准确检测到基波的相位.软件锁相技术具有数字控制的一切优点,研究了一种基于d口变换的三相软件锁相环。
实验结果表明,该方案解决了电网电压频率波动时的相位同步等问题,锁相精度高。
稳定可靠,并在工程上具有一定参考价值。
2024/3/16 21:35:17 1.43MB DSP2812
1
全面系统地介绍了现代交流电饥控制系统的基本原理、设计方法和数字校控制技术,在介绍了交流电机数字控制系统的理论基础和硬件基础之后.分别阐述交流电机控制系统的不同控制方法及其数字化的实现,重点介绍了已得到广泛应用的矢量控制系统、直接转矩控制系统的控制原理、投制规律和设计方法,并对无速度传感器控制系统和同步电机控制系统也给予了详细的介绍。
2024/3/9 16:28:27 98.66MB 交流电机数字 第3版 李永东
1
pmsm_程序近年来,在高性能全数字控制的电气传动系统中,作为电力电子逆变技术的关键,pwm技术从最初追求电压波形正弦,到电流波形正弦,再到磁通的正弦,取得了突飞猛进的发展[1]。
在众多正弦脉宽调制技术中,空间电压矢量pwm(或称svpwm)是一种优化的pwm技术,能明显减小逆变器输出电流的谐波成分及电机的谐波损耗,降低脉动转矩,且其控制简单,数字化实现方便,电压利用率高,已有取代传统spwm的趋势。
本文对空间电压矢量pwm的原理进行了深入分析,重点推导了每一扇区开关矢量的导通时间,并在ti公司生产的dsp上实现三相逆变器的控制,证明了分析的正确和可行性。
2024/2/14 8:01:22 110KB pmsm_程序
1
输入电压前馈Buck变换器的研究-输入电压前馈Buck变换器的研究.rar摘要:基于数字应用的灵活性,提出数字比例前馈控制(DigitalProportionalFeedForward,简称DPFF)的DC/DC变换器数字控制技术。
对采用该控制方法的变换器的稳态误差、瞬态响应和控制算法的复杂性进行了分析。
与比例控制(P控制)、比例积分控制(PI控制)和前馈控制(FeedForwardControl,简称FF控制)相比,DPFF具有控制简单,无稳态误差,对于参考阶跃响应有更好的暂态响应性能等优点,而且暂态性能比传统的PI控制变换器更好。
基于FPGA的实验电路验证了理论分析和仿真的结论。
2024/1/29 9:10:29 383KB matlab
1
控制系统设计指南本书从工程需要与实践中遇到的问题出发来讲述自动控制系统的设计、建模、构建、调试以及故障排除等问题。
全书分成三部分,共18章。
第一部分:控制原理,介绍频率域研究法、控制系统的调试、数字控制器中的延迟、z......更多信息>>
2023/9/20 3:56:57 8.16MB 控制系统
1
集成电力电子变换器及数字控制,这本书的电子版,清晰。
内容涉及直流变换器及其数字控制方面知识
2023/8/22 14:02:19 24.03MB 直流变换器 数字控制
1
主要讲述现代控制理论及应用,主要内容包括:控制系统概论,系统的数学模型,状态变量模型,反馈控制系统特性,反馈控制系统性能,线性反馈系统的稳定性,根轨迹法,频率响应法,频率域的稳定性,反馈控制系统的设计,状态变量反馈系统的设计,鲁棒控制系统,数字控制系统。
本书选用的例子多取材于当前高精尖科技领域,如计算机、航空航天、机器人、探测器、化工等领域,新颖而恰当,具有现实指导意义。
本书的一个重要特征是贯穿全书的一系列新奇而充满挑战性的循序渐进问题,通过这些已经解决或继续面临的一系列问题,将创造性精神潜移默化在问题答案的寻求过程
2023/8/2 22:02:13 4.82MB 控制系统 答案
1
共 18 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡