针对学校的,新高考制度的排课系统,改进遗传算法,进行自动排课,
2025/3/12 21:44:10 1.23MB 自动排课 遗传算法 新高考排课
1
基于改进遗传算法配电网络重构的研究基于改进遗传算法配电网络重构的研究
2025/2/3 22:27:19 4.87MB 基于改进遗传算法
1
针对Canny边缘检测算子用高斯函数作为滤波器会造成缓变边缘丢失及假边缘现象,提出用GCV阈值的小波滤波方法代替高斯滤波器来平滑图像,以有效地去除图像中的噪声,然后计算梯度算子的幅值和方向,最后用极大值抑制和高低阂值的方法检测及连接图像的边缘。
实验结果表明,改进的算法提高了边缘检测准确性,获得比较理想的边缘检测效果。
1
现在有很多粒子群算法不规范,国外有些工具包过于复杂,功能太大而无从下手,国内的一些文档上的方法多数都是一个粒子式地简单循环,不能够全面地发挥Matlab基于矩阵计算的能力,本程序中的主程序及目标函数均基于向量形式,另外,很多具体程序中缺乏对约束问题进行考虑,本程序可以针对约束问题给出结果以查看约束处理情况,另外还可以选择是否显示离线和在线性能等,再者,本工具包里包含有全局算法及局部算法,试验后发现,局部算法的性能要好得多(可能针对不同问题吧),最后,本算法模块化层次条理清晰,说明具体,可以简单改造成各种改进型算法。
1
改进遗传算法代码,有两个变异率和交叉率,可以用于电压无功的优化,但数据输入选要求填写。
2024/12/18 11:50:22 12KB 遗传算法
1
为了在大数据背景下从大量候选服务集中选择出合适的Web服务,并组合成能够完成复杂增值业务过程需求的组合服务,提出一种改进的烟花算法,首次应用于离散服务组合优化问题。
2024/12/13 19:46:38 289KB 群智能算法
1
这是我发表的第一篇论文《一种基于层次分析法的改进KNN算法》的代码文档。
这里面包含了AHP-KNN算法、FCD-KNN算法和论文实验代码,以及相关论文。
2024/10/28 22:08:09 1.65MB 机器学习 KNN算法 AHP-KNN算法
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
代码实现了基于遗传算法的模糊c均值算法,用于改进FCM当中的局部收敛问题,以达到全局最优。
2024/8/29 21:19:11 2KB 遗传算法 模糊c均值算法 改进 GA
1
自己写的改进遗传算法的python程序。
2024/6/23 12:07:28 7KB GA 遗传算法
1
共 46 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡