标题中的“何凯明去雾算法matalab源代码,可直接运行”指的是采用何凯明博士提出的图像去雾算法,并且提供了相应的Matlab实现,可以直接运行。
何凯明是计算机视觉领域的知名专家,他的去雾算法在图像处理中具有重要地位,常用于改善因大气散射导致的图像模糊问题。
在图像处理中,去雾算法是一种恢复图像清晰度的技术,尤其对于户外拍摄或低能见度条件下的照片尤为关键。
何凯明的去雾算法主要基于物理模型,假设大气层对光的散射可以用一个全局的透射率(transmissionmap)来描述。
这个算法通过分析图像的暗通道特性,估计透射率,并结合全局和局部信息来恢复图像的清晰度。
描述中提到“何凯明博士的图像去雾算法源代码,经调试可直接运行处理模糊图片”,这意味着你将获得一份已经过调试、可以直接在Matlab环境中运行的代码。
这对于学习和研究图像处理技术的人员来说是非常有价值的资源。
你可以直接使用这些代码来处理你的模糊图片,无需从零开始编写算法。
在Matlab中实现图像去雾算法,通常会涉及到以下几个关键步骤:1.**暗通道预处理**:找到图像中最暗的部分,这部分通常是由于雾的影响造成的,可以用来估计大气散射。
2.**透射率估计**:根据暗通道特性,估算出图像中每个像素点的透射率。
3.**大气光计算**:分析图像全局亮度来估计大气光,这是影响图像去雾效果的关键因素。
4.**恢复清晰图像**:利用透射率和大气光信息,通过物理模型对图像进行反卷积,恢复清晰图像。
标签“图像去雾算法”明确了这个压缩包的主要内容是关于图像去雾的算法实现。
文件名称“cvpr09defog(matlab)”可能表明这个算法是在2009年的计算机视觉与模式识别会议(CVPR)上发表的,而“defog”直接对应了去雾这一功能,表示这是用于去雾的代码。
这个资源对于学习图像处理,尤其是对去雾算法感兴趣的开发者或研究人员非常有帮助。
通过研究和实践这个源代码,不仅可以深入了解何凯明的去雾算法,还可以提升在Matlab中的编程能力,为自己的项目或研究提供强大的工具支持。
2025/9/28 13:24:28 226KB 图像去雾
1
难得的高清扫描版PDF,非以前的拍摄版,自己加了完整目录,方便阅读
2025/8/26 11:53:15 78.38MB Wireshark 分析实战
1
该压缩文件包含了实现图像配准所需的13的*.m文件和一个*.exe文件,对同一地点、不同方位拍摄的两张照片配准效果可观,值得下载。
2025/8/8 18:39:17 50KB SIFT 图像配准 Matlab 代码
1
eclipse项目,实现的功能为对相册选取图片以及使用相机拍摄获取图片功能
1
张正友相机标定Opencv实现,附棋盘格打印pdf和10张手机相机拍摄标定图、20张摄像头拍摄标定图。
包含完整的VS2015工程代码,有详细的注释说明,一键运行。
实现了相机标定、输出相机内参、外参、旋转和平移矩阵、标定效果评价、以及使用标定结果对原始棋盘图进行矫正。
标定结果与Matlab的非常接近
2025/7/16 1:43:29 95.67MB 张正友标定
1

在计算机视觉领域,相机标定是一项至关重要的任务,它能够帮助我们校正图像畸变,获取相机的内在参数,从而实现精确的三维重建和物体定位。
Tsai的标定方法是一种早期提出的、广泛应用于相机标定的经典算法,由Richard Tsai在1987年提出。
本篇文章将深入探讨Tsai的相机标定方法及其在Matlab环境下的实现。
我们来理解Tsai的相机标定理论基础。
该方法基于多视图几何,通过一组已知坐标点(通常是在平面棋盘格上的特征点)在图像中的投影,来求解相机的内在参数矩阵和外在参数矩阵。
内在参数包括焦距、主点坐标和径向畸变系数,而外在参数则表示相机相对于标定板的位姿。
Tsai的标定流程主要包括以下几个步骤:1. 数据采集:拍摄多张包含标定板的图片,确保标定板在不同角度和位置出现,以获取丰富的视图信息。
2. 特征检测:在每张图片中检测并提取标定板的角点,常用的方法有角点检测算法,如Harris角点检测或Shi-Tomasi角点检测。
3. 建立世界坐标与像素坐标的对应关系:将标定板角点在世界坐标系中的位置与在图像中的像素坐标对应起来。
4. 线性化问题:通过极几何约束,将非线性问题线性化,可以使用高斯-牛顿法或Levenberg-Marquardt法进行迭代优化。
5. 求解参数:求解内在参数矩阵K和外在参数矩阵R、t,其中R表示旋转矩阵,t表示平移向量。
6. 校正与验证:利用求得的参数对图像进行畸变校正,并通过重投影误差来评估标定结果的准确性。
在Matlab环境下实现Tsai的标定方法,可以充分利用其强大的数学计算能力和可视化功能。
需要编写代码来完成上述的数据采集和特征检测。
然后,利用内置的优化工具箱进行参数估计。
可以绘制图像和标定板的重投影误差,以直观地查看标定效果。
在提供的压缩包文件e19bb35c303d499aa5c2568a73f0a35f中,可能包含了实现上述过程的Matlab源代码。
代码可能分为几个部分,包括角点检测、标定板坐标匹配、线性化优化以及参数解算等模块。
用户可以通过阅读和运行这些代码,理解Tsai标定方法的工作原理,并将其应用到自己的项目中。
Tsai的相机标定方法是计算机视觉中的一个经典算法,它通过解决非线性优化问题,实现了相机参数的有效估计。
在Matlab环境下,我们可以方便地实现这一算法,对相机进行标定,为后续的视觉应用提供准确的先验信息。
对于初学者来说,理解和实践这个方法,不仅可以加深对计算机视觉原理的理解,也能提高编程和调试能力。
2025/6/20 1:32:22 5KB
1
自定义Android照相机,实现只拍摄矩形区域.完美解决预览及拍照时的照片拉伸失真,旋转等问题
2025/6/9 15:36:54 1.62MB 自定义照相机
1
TMDB电影数据分析,包括Kaggle上的原始数据集,以及代码,实现电影类型和票房,利润等的关系,对比两个公司的电影类型收入,拍摄集中年份,画出饼图,条形图,折线图,并进行关键词的提取,做出词云图。
2025/6/5 8:41:51 6.03MB kaggle movie
1
中科院虹膜数据库4.0中的眼睛近处拍摄照片,照片格式.jpg,可用于医学,安防中科院虹膜数据库4.0v中科院虹膜数据库4.0
2025/5/31 4:24:47 30.91MB 中科院虹膜
1
自拍的用于目标跟踪的红外图像序列,可用于单目标或多目标的跟踪(主要是针对行人)。
拍摄于晚上8点至9点间,目标与背景温差大,目标清晰。
2025/5/9 14:52:37 16.02MB 目标跟踪
1
共 136 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡