本文求得了单模双包层光纤之间耦合系数精确的解析表达式.计算了上升内包层、匹配包层和凹陷内包层光纤耦合系数随归一化频率V的关系曲线.也给出了不同V值的耦合系数随归一化距离(D/α)的关系曲线.该公式不但能够计算x偏振模的耦合系数,而且也能计算y偏振模的耦合系数.它可用于分析折射率差较大的光纤之间能量耦合以及耦合器的偏振特性.
2025/1/10 9:32:27 3.91MB 光纤 耦合 optical f
1
雷达成像原理(Word完整版)第一章雷达基础知识51.1雷达的定义51.2雷达简史51.3电磁波51.4脉冲81.5分贝值表示方法91.6天线101.7雷达散射截面122.1傅立叶变换142.2雷达硬件组成152.2.1振荡器152.2.2波形产生152.2.3混频器162.2.4调制162.2.5发射机162.2.6波导162.2.7双工器172.2.8天线172.2.9限幅器172.2.10低噪放大器182.2.11系统噪声182.2.12解调192.2.13正交混频202.2.14A/D转换器212.3天线222.3.1天线的概述232.3.2方向性函数242.3.3天线增益272.3.4天线口面上辐射场的渐变处理282.3.5余割平方天线292.4相控阵天线302.4.1一维线阵列天线312.4.2二维相控阵33第三章外部环境对雷达系统的干扰343.1雷达散射截面(RCS)343.1.1简单目标的RCS343.1.1.1理想导体球353.1.1.2平板363.1.1.3角反射器363.1.1.4Luneburg透镜373.1.2复杂目标的RCS383.1.3计算RCS的方法383.1.4极化因素383.1.4.1极化散射矩阵383.1.4.2简单目标的极化散射矩阵393.1.4.3更一般的极化基403.2传播与杂波413.2.1雷达波在大气中的折射413.2.2地表弯曲效应423.2.3雷达波在空气中的衰减433.2.4雷达波在雨水中的衰减433.2.5雷达波在地表的反射433.2.6多路效应443.2.7表面杂波反射453.2.8降水引起的雷达反向散射463.3外部噪音46第四章:基本雷达信号处理504.1从噪声和杂波中间测回波信号504.1.1检测器特点504.1.2检测的基本理论504.1.3噪声中检测无波动目标524.1.3.1:已知相位的单脉冲的相参检测524.1.3.2单脉冲包络检测524.1.3.3n个脉冲的相参积分:524.1.3.4n个非相参脉冲的积分变换损失:534.1.4施威林情形534.1.4.2波动损失534.1.5:噪声中目标检测小结:544.1.6:次积分:无振动目标544.1.7目标554.2雷达波形554.2.1总的雷达信号554.2.2匹配滤波器564.2.3:匹配滤波器对于延迟,多谱勒平移、信号的响应,584.2.4雷达模糊函数584.2.5例1:一个单脉冲;
距离和速度分辨率604.2.6例2:线性频率调制脉冲;
脉冲压缩614.2.7例3:相关脉冲序列:在距离和速度上的分辨率和模糊度624.2.7.1单脉冲串634.2.7.2线性调频脉冲串644.2.7.3其它脉冲序列654.2.8相差处理间隔664.2.9CPI的例子,求解雷达方程664.3雷达测量精确度674.3.1单脉冲674.3.2卡尔曼绕界限674.3.2.1在频率上得卡尔曼-绕界限684.3.2.2延迟上的卡尔曼绕界限694.3.2.3角度上的卡尔曼--绕界限694.3.2.4卡尔曼-绕界限的例子。
704.3.2.5总结:71第六章成像雷达简介726.1距离—速度压缩726.2旋转目标:逆合成孔径雷达726.3逆合成孔径雷达用于大范围目标756.4点扩展函数766.5标准二维逆合成孔径雷达:小角度776.6二维逆合成孔径雷达:大角度806.7三维逆合成孔径雷达816.8波数空间与极化设计方法816.9ISAR注释826.10ISAR的其他情况836.11近场ISAR846.12变化情况未知的目标及旋转85第七章合成孔径雷达897.1SAR897.1.1SAR模型907.1.2距离和速度等值线917.1.3动态补偿917.1.4斜面或平面927.1.5SAR对脉冲重复频率的要求927.1.6距离转移937.2SAR波形及处理947.2.1快时处理947.2.1.1SAR中的线性调频(LFM)947.2.1.2非线性调频处理957.2.1.3非畸变过程967.2.1.4LFM脊态987.2.2慢时(slowtime)处理987.3SAR成像质量997.
2024/12/13 4:13:01 1.44MB 雷达 雷达成像 原理
1
凸透镜轴上成像的相差(matlab模拟)使用:在matlab命令行下输入lens_imaging后回车参数:根据提示输入,单位厘米例如:s1(物距)=30n(折射率)=1.46r1(左球面半径)=10r2(右球面半径)=-10R(透镜半径)=5m(光线条数)=8
2024/11/18 15:56:15 17KB matlab 轴差
1
本文针对梯度折射率分布的透镜(以后简称梯析透镜)与光纤在折射率分布上的不同点,对用于光纤及其预制棒测量的聚焦法的原理公式,计算测量方法等进行了重要改进,从而使聚焦法可适用于梯折透镜的测量.本文通过计算机模拟计算,对原理公式及计算方法的准确性和可靠性进行了验证,并同时给出了这一测量方法的精度,最后给出了测量实例及其比较结果.
2024/11/15 22:42:25 3.57MB 折射率测 梯度折射 refractiv gradient-
1
ACD/ChemSketch是高级化学发展有限公司(ACD)设计的用于化学画图用软件包,该软件包可单独使用或与其他软件共同使用。
该软件可用于画化学结构、反应和图形。
也可用于设计与化学相关的报告和演讲材料。
ACD/ChemSketch有如下主要功能:结构模式:用于画化学结构和计算它们的性质。
画图模式:用于文本和图象处理分子性质模式:对以下性质进行估算:*分子量*百分组成*摩尔折射率,*摩尔体积*等张比容*折射率*表面张力*密度*介电常数*极性*单一同位素质量,标称分子量和平均分子质量ACD/ChemSketch可以作为画图软件包单独使用,也可作为其他ACD软件的终端使用,如NMR预测软件。
2024/10/19 13:27:21 38.99MB 化学
1
将渐变波导模式方程(WKB积分方程)化为分段积分,以波导某一模式在不同波长下的转折点为分段点,当波长相差很小时,相应的转折点相差也很小,可在各个分段积分中作折线近似,从而从理论上推出确定波导轮廓数据的递推式.以所得轮廓必须满足光滑条件为判据,最后定出波导的轮廓.该方法尤其适用于单模渐变波导,而且无需事先假设待定轮廓的函数形式.本文对双曲止割和抛物线轮廓的理想波导进行了计算机模拟,结果证明该方法的精度达到10~(-3)甚至于更高.而且理论上具有分割愈密,精度愈高的优点.
2024/9/12 1:56:26 3.39MB 逆WKB法 折射率轮 波导 inverse
1
提出了一种在非线性聚合物光波导中实现高效切连科夫倍频辐射的方法,避免了传统结构中多次反射引起的损耗,而且具有易制备和结构紧凑的优点,通过选择聚合物薄膜的厚度和折射率,实现了基频导波与倍频导波的近相位匹配。
在实验中实现了转换效率1.6%W-1cm-1,这是迄今为止在聚合物中所报道的最高值。
2024/9/3 2:53:13 609KB 论文
1
对于进行探地雷达以及电磁波传播特性研究的工作者们有一定的帮助。
算法最为重要
2024/8/3 18:21:46 603B 折射点 MATLAB 多层介质
1
偏振编码器的稳定性是影响偏振编码通信的关键因素之一。
本文采用时变矢量对基于铌酸锂(LN)相位调制的偏振编码器的稳定性进行了深入研究。
实验表明,LN的初步相关消耗主态与初步相关相移主态基本一致,说明LN的偏振相关损耗不会影响折射率态的稳定性。
实验中观察到阳离子态旋转具有“惯性”:当电压从0V增加到某个定值后,利率态会继续变化预算(反之亦然),大约在30分钟左右才达到稳定。
该现象对于低速调制将带来不利影响;
对于高速调制,平均功率的变化也将引起甲醛。
1
算法是建立在离线传播模型下,不考虑多径效应,反射,折射等对信号强度有损耗的情况,算法中选用了NN,KNN,WKNN等几种常用的指纹定位算法。
2024/7/30 11:25:27 3KB matlab
1
共 63 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡