针对数据量庞大引起模型参数更新时样本选择困难及训练速度慢的缺陷,提出基于投影寻踪回归的铜闪速熔炼过程关键工艺指标预测方法。
首先采用机器学习方式提取用于建模所需的类似样本集,借助投影寻踪回归思想,建立铜闪速熔炼过程关键工艺指标预测模型;然后利用基于实数编码的加速遗传算法进行模型参数的实时更新。
训练样本的机器选择可以避免人工选择带来的主观性和盲目性缺陷,模型参数的更新训练只在类似样本集中进行,可有效提高模型参数更新速度。
实际生产数据仿真结果验证了所提方法的有效性和可行性。
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡