适合32位系统电脑,方便快捷,适应性强。
2025/12/29 4:31:46 942KB c++
1
Python作为近几年越来越流行的语言,吸引了大量的学员开始学习,为了方便新手小白在学习过程中,更加快捷方便的查漏补缺。
根据网上各种乱七八糟的资料以及实验楼的Python基础内容整理了一份极度适合新手小白的Python基础入门必学知识点笔记。
2025/12/27 13:35:39 51.03MB Python学习 Python基础内容
1
设置好保存目录,间隔时间后,可以自动截屏并保存,支持快捷键C#,VS2008工程
2025/12/25 2:27:10 73KB 截屏 定时 自动保存 快捷键
1
现在,几乎每个学校都有自己的学生信息管理系统,用来管理庞大的学生信息,如果没有一个有效,快速的计算机系统来支持,那工作量是非常大的。
我设计的只是一个简单版的学生信息管理系统,用来模拟实现管理学生信息首先,我们要求学校内的所有人都可以方便地查询学生信息。
这就要求我们这个系统对学校内所有人都是公开的。
只有特定的人才可以对学生信息进行添加,插入,更新以及删除的操作,比如学校的管理人员。
这就要求这个学生信息管理系统要有:登录模块教师和学生模块信息维护模块成绩管理模块 而对于教师和学生模块,因权限不同,又有各自独立的功能子模块。
实现以上功能,能够方便、快捷地获得所需信息,并具有友好的图形界面。
1.3开发环境操作系统:WindowsXP语言选择:Java开发工具:Myeclipse8.5数据库选择:MySQL5.1.46开发框架:Struts2+Hibernate3.3+Spring2.5整合开发项目报告全文请点击我的用户名:毕业设计报告
1
《NAND工具与数据转储详解》在IT领域,NAND工具是针对NAND闪存设备进行管理和数据处理的专业工具。
NAND闪存是一种非易失性存储技术,广泛应用于移动设备、固态硬盘(SSD)以及各种嵌入式系统中。
本篇文章将深入探讨NAND工具及其相关知识点,包括NAND闪存的工作原理、NAND工具的功能以及如何使用这些工具进行数据转储。
NAND闪存以其高密度和低功耗特性成为现代电子设备的理想存储解决方案。
其工作原理基于浮栅晶体管,通过控制电荷的存储来表示数据。
NAND闪存分为SLC(单级单元)、MLC(多级单元)、TLC(三级单元)和QLC(四级单元)等不同类型,每种类型在存储容量和读写速度上有所不同,同时其耐久性和稳定性也有所差异。
NAND工具通常用于以下任务:1.数据备份与恢复:由于NAND闪存的写入次数有限,定期备份数据至关重要。
NAND工具可以帮助用户安全地备份存储在NAND芯片上的数据,以防意外丢失。
2.错误检测与修复:NAND闪存可能出现坏块或数据错误,NAND工具可以检测并尝试修复这些问题,保证数据的完整性。
3.数据分析:对于开发人员和研究人员,NAND工具可以用于分析闪存的结构和性能,优化存储系统的效率。
4.恢复固件:在固件升级或设备故障时,使用NAND工具可以将设备恢复到先前的状态。
在给定的文件列表中,我们可以看到以下几个关键工具:1.NAND-bin2raw.exe:这是一个将NAND闪存的二进制映像转换为原始格式的工具。
这在分析或编辑NAND数据时非常有用,因为原始格式通常更容易处理。
2.nand-aes-dump.c:这是一个源代码文件,可能包含用于AES加密的NAND数据转储功能。
AES(AdvancedEncryptionStandard)是广泛使用的加密标准,确保数据的安全。
3.zestig.exe:可能是一个实用程序,用于执行特定的NAND操作,如读取、写入或擦除。
4.cmd.lnk:这是一个Windows快捷方式文件,可能指向一个命令行界面,用于运行NAND工具。
5.nand-aes-dump.exe:这是已编译的程序,用于执行AES加密的数据转储操作,与源代码文件nand-aes-dump.c相对应。
在实际操作中,使用这些工具通常涉及以下步骤:1.连接设备:通过适当的硬件接口(如JTAG或SPI)连接NAND闪存设备到计算机。
2.识别设备:运行NAND工具,识别并选择要操作的NAND芯片。
3.执行操作:根据需求,使用工具进行数据备份、转储、加密或解密等操作。
4.验证结果:完成操作后,验证数据的完整性和一致性。
总结来说,NAND工具是管理和维护NAND闪存设备的重要手段,它们提供了一套功能强大的工具集,用于数据备份、恢复、错误检测、加密和分析。
通过正确使用这些工具,我们可以确保NAND闪存设备的稳定性和数据安全性。
了解和熟练掌握这些工具的使用,对于IT专业人士来说至关重要。
2025/12/23 21:12:02 55KB tool NAND
1
傅里叶逆变换方法生成路面不平度,具有计算效率高,快捷方便的特点,适用于车辆动力学仿真和控制中路面激励的构建,该资源采用Matlab编写,注释详尽。
2025/12/22 11:05:22 3KB Matlab 傅里叶 路面 汽车仿真
1
该工具集便于unity3d程序员快捷开发,集成了许多方法,可以在游戏中直接调用,具体用法,网上有很多资料。
2025/12/21 14:53:23 430KB unity插件
1
方便、快捷绘画流量图、易上手、内嵌中文包
2025/12/16 19:51:10 1.77MB 流程图 DiagramDesigner
1
Cesium是一款强大的开源Javascript库,专门用于创建交互式的3D地球浏览器和虚拟地理空间应用程序。
在Cesium1.47版本中,用户可以利用其先进的WebGL技术来展示高精度的地形、卫星图像以及3D模型。
这个版本的发布可能预示着Cesium将更加注重商业化,官方网站启用com域名可能意味着即将引入付费服务或更专业的支持。
Cesium的核心功能包括:1.**实时3D渲染**:Cesium使用WebGL进行高性能的3D图形渲染,可以在任何现代浏览器中提供流畅的地球视图体验,无需插件。
2.**全球覆盖**:内置的全球地形和卫星影像数据允许用户查看地球的任意位置,且数据更新频繁,确保最新信息。
3.**丰富的API**:Cesium提供了详尽的JavascriptAPI,开发者可以通过这些接口创建交互式地图,添加标记、绘制路径、加载3D模型等。
4.**时间动态显示**:Cesium支持时间动态显示,可以用于回放历史轨迹或预测未来趋势,非常适合航空、航海和气象等领域。
5.**集成GIS数据**:Cesium能够与多种GIS数据格式兼容,如KML、GeoJSON、WMS等,方便导入和展示各种地理信息。
6.**3D模型支持**:通过glTF格式,Cesium可以加载和显示复杂的3D模型,如建筑物、车辆或地形特征,增强了场景的真实感。
7.**社区与资源**:Cesium有一个活跃的开发者社区,提供许多示例代码、教程和插件,帮助初学者快速上手。
在Cesium的官方教程中,你可能会学到如何:-**初始化场景**:设置视图、投影和场景的基本属性,如重力、光照等。
-**添加数据源**:如何加载地形、卫星影像、矢量数据以及3D模型到场景中。
-**控制交互**:实现平移、缩放、旋转等操作,以及添加控制面板和键盘快捷键。
-**创建动画**:使用时间滑块或时间差函数实现动态效果。
-**事件处理**:监听用户的交互事件,如点击、鼠标移动等,并作出响应。
-**性能优化**:理解如何有效地管理数据和图形渲染,以提高应用程序的性能。
-**自定义扩展**:开发自定义的Cesium组件,以满足特定需求。
学习Cesium1.47及其官方教程,对于WebGIS开发人员、地理信息科学家以及对3D地理空间应用感兴趣的开发者来说,是一个宝贵的机会。
随着可能的商业化进程,Cesium未来可能会提供更高级的服务和专业支持,但其开源的核心仍然会为社区提供强大的基础工具。
因此,尽早掌握Cesium的使用技巧,将有助于你在地理空间领域保持竞争优势。
2025/12/8 9:21:27 158.09MB Cesium
1
本文详细介绍了在GoogleEarthEngine(GEE)中提取水体边界的方法和步骤。
首先,需要选择合适的卫星影像数据,如Landsat或Sentinel系列。
其次,通过水体指数法(如NDWI和MNDWI)增强水体信息,并设置合适的阈值提取水体。
接着,使用边缘检测算法(如Canny或Sobel)获取精确边界。
最后,进行后续处理以优化结果。
文章还提供了一个简化的GEE代码示例,展示了如何使用NDWI指数和阈值法提取水体边界。
整个过程涉及数据选择、指数计算、阈值提取、边缘检测和后续处理,通过合理调整参数和方法可获得准确的水体边界信息。
在当今世界,遥感技术与地理信息系统(GIS)在环境监测、资源管理和各种地球科学研究领域中发挥着巨大作用。
GoogleEarthEngine(GEE)作为一款强大的云平台工具,为这些研究提供了便捷的途径,尤其在水体边界提取方面,GEE提供了操作方便、计算高效的优势,使得复杂的数据处理过程变得简单快捷。
利用GEE平台获取遥感影像数据是水体边界提取的第一步。
通常,研究者倾向于选择多时相、多光谱的卫星数据,例如Landsat或Sentinel系列。
这些数据源具有较高的空间分辨率和较短的重访周期,能够满足不同时间尺度的水体变化监测需求。
获取数据后,研究者需通过一系列图像处理技术来提取水体信息。
水体指数法是遥感影像水体信息提取的常用方法,它通过特定算法计算每个像元的水体指数值,该值可以用来区分水体和非水体区域。
常用的水体指数包括归一化差异水体指数(NDWI)和改进型归一化差异水体指数(MNDWI)。
这些指数通过反映水体在近红外波段的低反射率和在绿光波段的高反射率特性,将水体和其他地物有效区分。
在实际操作中,研究者需要根据具体应用场景选择合适的水体指数,并通过实验确定最佳阈值来提取水体边界。
提取出的水体边界往往需要进一步的处理来优化结果。
边缘检测算法,如Canny或Sobel算法,能够帮助识别和提取水体的轮廓线。
这些算法通过分析影像中亮度的梯度变化来确定边界的位置,其效果受到多种因素影响,包括所选算法的特性和影像质量等。
为了确保水体边界的准确性,后续处理工作至关重要。
这包括影像预处理、滤波、平滑以及可能的目视检查等。
预处理步骤主要是为了减少噪声干扰和改善影像质量,例如进行大气校正、云和云影去除等。
滤波和平滑操作有助于消除边缘检测过程中产生的毛刺和凹凸不平。
在实际应用中,研究者还需结合实际水体的形态特征和地理知识,对提取结果进行修正和补充,以确保水体边界的准确度。
文章中提到的GEE代码示例,简化了整个提取过程,向用户展示了如何使用NDWI指数和阈值法来提取水体边界。
这不仅有助于理解整个提取过程,而且便于用户在实际工作中根据自己的数据进行相应的调整和应用。
此外,考虑到遥感数据的多源性和多样性,软件开发人员也在不断地完善和更新GEE平台的相关软件包。
这些软件包集成了各种常用的遥感影像处理功能,使得用户无需从头编写复杂的代码,就能在平台上直接进行水体边界提取等操作。
这大大降低了用户的技术门槛,提高了工作效率。
在GEE平台中,提取水体边界是一套系统的工程,它涉及到影像数据的获取、水体指数的计算、阈值的设定、边缘检测算法的应用以及后续处理的优化等多个环节。
这些环节相互关联,每个环节的精准度都直接影响着最终结果的准确度。
随着遥感技术的不断进步和GEE平台的持续优化,提取水体边界的方法将变得更加高效和精确。
2025/12/5 22:44:52 6KB 软件开发 源码
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡