【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。
它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。
然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。
【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。
在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。
主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。
【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。
它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。
在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。
【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。
通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。
预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。
MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。
【风力发电预测】RBF神经网络同样适用于风力发电量的预测。
通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。
总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。
通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。
此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
1
为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。
使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;
利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。
仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%
2025/3/2 11:19:56 327KB 粒子滤波 RBF
1
《实用化工计算机模拟--MATLAB在化学工程中的应用》共九章。
第1章是化工模拟计算概述,主要叙述化工模拟的重要性、数值计算技术的发展现状、化工模拟计算文献综述等。
第2章介绍MATLAB的编程基础,帮助读者快速MATLAB入门。
第3章结合实例介绍常用的数值计算方法及相应MATLAB函数的使用方法,内容包括插值与拟合、数值积分与数值微分、线性和非线性代数方程(组)的数值解法、常微分方程初值问题和边值问题的解法等。
第4章专门介绍化工常微分方程初值问题和边值问题的应用实例,包括间歇反应器、边疆槽式搅拌反应器、管式反应器、半连续反应器、传质过程、伴有反应的扩散过程、传热过程、流体流动、生化反应和过程控制等。
第5章是化工中的偏微分方程及其求解,介绍有限差分法、正交配置法、MOL法和有限元法,其中有限元法主要介绍MATLAB的PDE求解器及其求解化学工程PDE问题的具体方法,例子包括一维动态方程组、二维稳态方程(组)、二维动态方程等问题。
第6章介绍最优化方法及其MATLAB常用算法,内容包单变量最优化问题、线性规划、无约束多变量问题最优化、二次规划、多变量有约束最优化(非线性规划)问题和最小二乘法等。
第7章结合实例详细介绍参数估计方法和模型辨识方法。
第8章介绍化工试验设计方法及化工数据处理。
第9章介绍神经网络(线性神经网络、BP神经网络和径向基神经网络)及其相应的MATLAB函数,并结合实例介绍神经网络的使用方法。
《实用化工计算机模拟--MATLAB在化学工程中的应用》可供化学工程、化工工艺、生化工程、环境工程、制药工程及相关专业的大学高年经本科生、硕士和博士研究生教材及参考书,也可供应用数学、过程控制等相关专业的科研人员参考。
2025/2/23 2:32:56 3.83MB matlab 化学工程 模拟
1
本地实测可以很好的运行,使用K-means聚类算法确定径向基函数的中心点
2024/12/16 4:37:37 7KB RBF,Java
1
Lecture.径向基函数(RBF).pdf
2024/10/23 18:38:41 938KB 信号处理 图像识别
1
深入研究灰度共生矩阵算法,结合和差统计法对其进行改进。
编码实现改进的图像纹理提取算法,并采用基于径向基内积函数内核的支持向量机方法对图像分类效果进行实验。
通过训练和测试证明,该系统能减少特征提取的计算时间和存储空间,并可达到良好的图像分类效果
2024/9/15 2:45:17 315KB 纹理特征
1
完整的PDF版 第1章绪论  1.1从生物神经网络到人工神经网络  1.2人工神经网络的发展史  1.3人工神经网络的应用  1.4生物神经元  1.5人工神经元模型  1.6神经网络的结构  1.7神经网络的特点  1.8神经网络的学习方式  第2章MATLAB神经网络工具箱中的神经网络模型  2.1MATLAB工具箱的神经元模型  2.2MATLAB工具箱中的神经网络结构  2.3MATLAB神经网络工具箱中的网络对象及其属性  2.3.1网络对象属性  2.3.2子对象属性  第3章感知器  3.1感知器神经元及感知器神经网络模型  3.2感知器的学习  3.3感知器的局限性  3.4单层感知器神经网络的MATLAB仿真程序设计  3.5多层感知器神经网络及其MATLAB仿真  3.6感知器应用于线性分类问题的进一步讨论  第4章线性神经网络  4.1线性神经网络模型  4.2线性神经网络的学习  4.3线性神经网络的MATLAB仿真程序设计  4.3.1线性神经网络设计的基本方法  4.3.2线性神经网络的设计例程  第5章BP网络  5.1BP神经元及BP网络模型  5.2BP网络的学习  5.2.1BP网络学习算法  5.2.2BP网络学习算法的比较  5.3BP网络泛化能力的提高  5.4BP网络的局限性  5.5BP网络的MATLAB仿真程序设计  5.5.1BP网络设计的基本方法  5.5.2BP网络应用实例  第6章径向基网络  6.1径向基网络模型  6.2径向基网络的创建与学习过程  6.3其他径向基神经网络  6.4径向基网络的MATLAB仿真程序设计  第7章竞争型神经网络  7.1竞争型神经网络模型  7.2竞争型神经网络的学习  7.3竞争型神经网络存在的问题  7.4竞争型神经网络的MATLAB仿真程序设计  第8章自组织神经网络  8.1自组织特征映射神经网络模型  8.2自组织特征映射神经网络的学习  8.3学习向量量化神经网络模型  8.4学习向量量化神经网络的学习  8.5LVQ1学习算法的改进  8.6LVQ神经网络的MATLAB仿真程序设计  第9章反馈型神经网络  9.1Elman神经网络  9.2Hopfield神经网络  9.3反馈神经网络的MATLAB仿真程序设计  第10章图形用户界面  10.1图形用户界面简介  10.2图形用户界面应用示例  10.3图形用户界面的其他操作  第11章Simulink  11.1Simulink神经网络仿真模型库简介  11.2Simulink应用示例  第12章自定义网络  12.1自定义神经网络  12.1.1自定义神经网络的创建  12.1.2自定义神经网络的初始化、训练与仿真  12.2自定义函数  附录A神经网络工具箱函数  参考文献
1
需要自行下载matrix.h文件,可以直接运行,得出插值估计值与实际值比较的结果。
2024/8/17 3:20:40 5KB rbf 径向基
1
《MATLAB神经网络原理与实例精解(附光盘)》首先简要介绍了MATLAB软件的使用和常用的内置函数,随后分门别类地介绍了BP网络、径向基网络、自组织网络、反馈网络等不同类型的神经网络,并在每章的最后给出了实例。
在全书的最后,又以专门的一章收集了MATLAB神经网络在图像、工业、金融、体育等不同领域的具体应用,具有很高的理论和使用价值。
全书内容详实、重点突出,从三个层次循序渐进地利用实例讲解网络原理和使用方法,降低了学习门槛,使看似神秘高深的神经网络算法更为简单易学。
2024/8/7 6:40:20 111.34MB MATLAB 神经网络
1
RBF径向基函数神经网络,内附训练方法等,注重理论的说明,适用用论文撰写引用。
使之具有初步研究RBF神经网络的能力。
2024/7/27 2:03:38 219KB RBF 径向基 神经网络
1
共 38 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡