BELLHOP模型是利用高斯波束追踪法,求解出水平但非均匀的水声环境中的声场。
而高斯波束追踪方法,是解决高频信号的水平变化问题相当有效的方法之一。
该工具箱中充分考虑信道中各种影响因素,包括风速、海底反射参数等。
同时也可根据自己导入的声速文件修改信道环境。
2024/12/23 14:50:02 5.47MB 水声 Bellhop 射线信道模型
1
25662脂质体稳定性影响因素研究及提高脂质体稳定性的方法.doc
2024/8/13 9:22:13 75KB 毕业论文
1
由于相机标定易受靶标自身和外界环境因素的干扰,且相机标定精度直接影响双目视觉或三维重建等计算机视觉领域的结果,因此,在标定过程中要尽可能提高相机的标定精度。
相机标定过程中的精度影响因素主要为靶标自身的网格尺寸、特征点数目、摆放位姿和平面性,以及相机提取靶标图片的数量、标定物距、光照条件等。
以相机标定精度的影响因素为切入点,介绍了相机标定的成像模型和单因素对标定精度的影响情况,总结出相机标定的最优标定工况条件,为相机标定的研究提供了有效参考。
2024/7/7 15:41:20 1.03MB 相机标定的精度
1
应用散射参数理论对大功率固态功放合成的效率进行计算推导,分析了合成效率的影响因素。
基于概率论与数理统计的方法,对功率合成效率建立数学模型,提出了在不等幅、不等相位情况下,功率合成效率的理论数学期望。
为功率合成效率预估提供了一种有效分析方法,同时也为大功率固态功放发射系统的研制提供了有力的理论依据。
1
激光光幕靶是弹丸测速的主要设备之一,针对阵列式点状激光靶的测速要求,研究了系统调试和测量过程中的影响因素。
根据阵列式点状激光靶的测速原理,通过实验分析了负载电阻、光照距离、光照角度、发射角等因素对单路接收信号(负载电压)的影响;
根据弹丸过靶时遮挡激光光束对光强变化情况,建立了相应的数学模型,并以此得到了不同压差下计时的相对误差,分析了光幕均匀性对整个测速系统的影响。
理论建模和实验分析为阵列式点状激光靶的结构设计和在测速系统中的应用提供了理论依据和参考。
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
在管道内检测中,检测装置和管道之间的相对运动会引起涡流,而涡流强度会受到检测速度、管道电导率、磁铁矫顽力、磁化器长度等因素的影响,进而影响到漏磁检测信号.对影响漏磁检测中涡流强度的几个关键因素进行了分析,通过有限元仿真得到了各个因素对管壁内涡流强度和管壁磁场状态的影响关系,并建立内、外壁缺陷模型,得到了各个因素对检测信号的具体影响.
2024/4/25 18:08:31 2.62MB 漏磁;内检测;速度效应;涡流
1
通过总结所有IaaS(infrastructureasaservice)云服务定价的方法,明确了pay-per-use和subscription是目前业界普遍采用的两种定价方法,分析了IaaS云服务定价影响因素,并把IaaS云计算服务的五大基础参数(初始投资、合同期限、资源折旧、服务质量和资源年限)映射到BSM模型中,利用复利摩尔定律和BSM模型公式计算出IaaS云服务在两种定价方法(pay-per-use和subscription)下相对应的价格范围,并分析了两种定价方法的适应范围,更好地解决了现阶段对于IaaS云服务定价中只有云计算服务提供商单边定价的弊端,并从云计算服务提供商和用户两者的角度提供了对于IaaS服务价格的衡量标准。
2024/3/1 13:30:40 897KB 云计算 服务定价 IaaS BSM
1
是一个简单的DEMTAL程序,进行计算影响因素的中心度和原因度,来判断影响因素的影响程度
2024/1/23 12:29:18 507B DEMATEL
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
共 34 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡