本文实现了二维图形的几何变换,以矩阵运算作为数学基础,采用旋转、平移和缩放等基本几何变换,对一简单的二维图形做变换。
为了保证矩阵运算一致性,故引入了齐次坐标的概念。
本文选择了一三角形,编写VC++程序,验证了上述几个几何变换。
2025/11/10 10:27:04 155KB 几何变换 矩阵运算 齐次坐标
1
头部姿势数据库是1590个单眼面部图像的基准,其具有从-90到+90度的平移和倾斜角度的变化。
对于每个人,可以使用2个系列的93个图像(93个不同的姿势)。
每人2个系列的目的是能够训练和测试已知和未知面部的算法(参见第2和第3节)。
数据库中的人戴或不戴眼镜,并有各种肤色。
背景是自愿中立和整洁的,以便专注于面部操作。
该数据集包含了水平方向上的角度标记与垂直方向上的角度标记,是kaggle比赛常用的头部姿态估计训练数据集。
2025/11/7 10:15:36 15.95MB datasets headpose
1
基于matlab的坐标变换程序,通过坐标的平移和旋转,实现坐标系中不同位置处物体三维坐标匹配。
2025/11/2 20:09:03 30KB 坐标变换
1
自己封装的鼠标封装的鼠标场景漫游工具类RoamingScenceManager,跟界面没有任何关系,压缩包里面有三个工程,分别是Qt,Win32(原生OpenGL界面),MFC三个环境,里面都用到了RoamingScenceManager,用法简单,适合刚刚学opengl的新手构建场景。
2025/11/2 11:35:09 4.78MB OPenGL
1
交互式画直线,圆,椭圆(DDA等各种算法都有)交互式二维图形填充(扫描线转换,区域填充3种算法)都有二维图形裁剪(直线和图形都有)二维图形几何变换变换(平移,旋转等都有)三维图形几何变换还有图形消隐和画B样曲线最后还有两个二维动画这是我花了好长时间才做出的看大家都在找计算机图形学大作业就把我以前做的作业发给大家看看有完整的代码不懂得可以联系我帮你解答!^-^
2025/10/14 13:51:11 3.53MB 计算机图形 MFC
1
软件平台VS2010,使用的是MFC+OpenGL,旋转是通过ArcBall实现。
左键按下旋转,鼠标滚轮实现缩放,右键平移。
2025/10/3 13:30:30 12.95MB OpenGL、MFC
1
适合初学数字图像处理的人群。
利用C#的Bitmap,BItmaData,Graphic等类对数字图像进行处理,开发窗体程序等等。
2025/9/22 21:17:35 217KB C# Multi-Media
1
在中国的地理信息系统(GIS)和测绘领域,坐标系的转换是一项重要的任务。
本文将深入探讨“经纬度与我国54、80大地坐标转换的小工具”所涉及的关键知识点。
我们要了解“54坐标系”和“80坐标系”的概念。
54坐标系,全称为1954年北京坐标系,是基于苏联1942年普尔科沃大地坐标系的一种坐标系统。
在20世纪50年代,中国主要采用这一坐标系进行测量工作。
而“80坐标系”,即1980西安大地坐标系,是中国在1978年全国天文大地网平差后建立的新坐标系统,它采用了国际地球自转服务(IERS)推荐的地极原点和地球参考椭球模型,更符合现代地理空间数据的需求。
经纬度是我们最常见的地理位置表示方式,由经度和纬度两个参数组成。
经度表示东西方向的位置,以本初子午线(通过英国格林尼治天文台的经线)为0度,向西至180度,向东至180度。
纬度则表示南北方向的位置,以赤道为0度,向北至90度为北极,向南至90度为南极。
54坐标系和80坐标系与经纬度之间的转换通常涉及到椭球参数、投影方法和坐标平移等多个步骤。
这两个坐标系都基于特定的椭球模型,54坐标系使用的是克拉索夫斯基椭球,80坐标系使用的是国际大地测量与地球物理联合会(IUGG)推荐的克拉克1866椭球。
由于地球不是一个完美的球体,而是椭球形状,因此不同的椭球模型会导致坐标有所不同。
转换过程一般包括以下步骤:1.**椭球参数转换**:每个坐标系都有自己的椭球参数,包括长半轴(a)和扁平率(f),需要根据这些参数调整经纬度坐标。
2.**坐标平移**:由于历史原因,54坐标系和80坐标系在原点上有差异,需要进行平移操作。
3.**投影转换**:由于地球表面是曲面,而地图通常是平面,所以需要将经纬度坐标通过特定的投影方法(如高斯-克吕格投影)转换为平面坐标。
4.**系数计算**:转换过程中会涉及一系列的数学公式和转换系数,确保从一个坐标系到另一个坐标系的准确转换。
这款名为“经纬度与我国54、80大地坐标转换的小工具”的软件,就是基于以上理论,提供了便捷的转换功能。
用户只需要输入经纬度坐标,程序会自动完成上述计算,给出对应的54或80坐标系结果。
这对于GIS工作者、测绘人员以及需要处理地理位置数据的用户来说,是一个非常实用的工具。
需要注意的是,随着现代GIS技术的发展,中国已经逐步推广使用更加精确的WGS84坐标系(世界大地坐标系)和CGCS2000(中国2000国家大地坐标系)。
CGCS2000基于最新的地球椭球模型,与WGS84兼容,更适合现代导航和定位需求。
不过,对于历史数据的处理,54和80坐标系的转换仍然具有重要价值。
总结起来,这个小工具帮助用户跨越了不同坐标系之间的鸿沟,简化了复杂的数学计算,提高了工作效率,体现了GIS技术在实际应用中的灵活性和实用性。
2025/9/22 20:20:50 117KB 54、80坐标系
1
MFC实现简易画图程序,可以画矩形,圆形,三角形,直线,点。
可以旋转、放大、缩小、平移。
2025/9/17 6:52:02 5.19MB MFC 画图 继承 旋转
1
标题中的“flash+xml+js仿google地图+源码”揭示了这个压缩包包含了一套使用Flash、XML和Javascript技术模仿Google地图的应用程序。
这个项目可能是为了教学目的,或者是开发者为了展示如何利用这些技术来创建类似Google地图的交互式地图服务。
下面我们将详细探讨这些技术及其在实现此类应用中的作用。
Flash是一种广泛用于创建动态内容和交互式应用程序的多媒体平台。
在本项目中,Flash可能被用来处理地图的动画效果,用户交互(如缩放、平移)以及地图图层的显示。
由于Flash可以提供丰富的图形和动画功能,因此它非常适合用于创建具有流畅用户体验的地图应用。
XML(可扩展标记语言)则可能用于存储地图数据,如地理位置信息、图层配置、标记等。
XML的结构化特性使得数据易于读取、理解和维护。
在Flash中,可以通过ActionScript(Flash的编程语言)解析XML文件,将数据加载到地图中。
Javascript是网页开发中的主要脚本语言,通常用于增强页面的交互性。
在这个项目中,Javascript可能与Flash通过ExternalInterface进行通信,实现浏览器端的一些功能,如响应用户的点击事件、处理Ajax请求以获取动态地图数据等。
此外,Javascript还可以用于处理跨域问题,允许从不同的服务器获取地图数据。
在描述中提到,XML文件的路径可能需要在FLA(Flash的源文件格式)中进行修改,这意味着开发者需要根据实际部署的环境调整资源的引用路径。
同时,一些FLASH提交表单程序可能包含了PHP或ASP文件,这表明应用可能有后台处理逻辑,比如处理用户提交的位置搜索请求,或者存储用户自定义的标记信息。
PHP和ASP都是服务器端脚本语言,可以处理这些动态数据交互。
压缩包内的“1_070531224805”可能是一个文件名或文件夹名,这通常代表项目的某个特定版本或日期。
在实际操作中,你需要将这个压缩包解压并查看具体文件,以便了解其详细结构和工作原理。
这个项目结合了Flash的图形表现力、XML的数据组织和Javascript的交互能力,构建了一个模仿Google地图的Web应用程序。
通过学习和分析这个源码,开发者可以深入理解这些技术在地图应用中的应用,为自己的项目提供灵感和参考。
2025/9/1 17:09:14 115KB 源码
1
共 210 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡