针对基本粒子群优化(basicparticleswarmoptimization,简称bPSO)算法容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化方程和添加极值扰动算子两种策略加以改进,提出了简化粒子群优化(simpleparticleswarmoptimization,简称sPSO)算法、带极值扰动粒子群优化(extremumdisturbedparticleswarmoptimization,简称tPSO)算法和基于二者的带极值扰动的简化粒子群优化(extremumdisturbedandsimpleparticleswarmoptimization,简称tsPSO)算法.sPSO去掉了PSO进化方程的粒子速度项而使原来的二阶微分方程简化为一阶微分方程,仅由粒子位置控制进化过程,避免了由粒子速度项引起的粒子发散而导致后期收敛变慢和精度低问题.tPSO增加极值扰动算子可以加快粒子跳出局部极值点而继续优化.对几个经典测试函数进行实验的结果表明,sPSO能够极大地提高收敛速度和精度;tPSO能够有效摆脱局部极值点;以上两种策略相结合,tsPSO以更小的种群数和进化世代数获得了非常好的优化效果,从而使得PSO算法更加实用化.
1
提取有效的特征一直是笔迹鉴别的关键问题,针对传统Gabor滤波器特征提取方法存在的不足,充分利用Gabor滤波系数间的相关关系,提出一种融合全局特征和局部特征的特征提取方法。
该方法先通过字符笔画的方向梯度直方图(HOG)来优化Gabor滤波器的角度参数,再利用高斯马尔科夫随机场(GMRF)模型对Gabor滤波图像中的不同局部结构信息进行描述,最终得到笔迹图像的整体特征。
以楷书四大家的真迹样本和收集的英文手稿作为实验数据,采用最小加权欧式距离分类器对笔迹样本进行分类,通过五重交叉验证法分别得到97.6%和88.3%的正确分类率,表明该方法提取的特征具有较强的笔迹表征能力,是一种有效的笔迹特征提取方法。
2025/1/3 11:20:23 932KB 论文研究
1
外国人写的一个虚拟示波器,具有多通道,实时动态显示波形功能。
能选择性为曲线添加节点修饰,还能用鼠标对曲线拉框局部放大,更关键的是,代码效率相当高,4通道同时动态跟踪显示曲线,完全无视觉停顿感。
工程是MFC+ATL编写的,ATL跟MFC相似度达到90%以上,只要你对MFC不是很菜,读懂代码完全没问题。
里面有很多C++编程上的技巧,仔细研究,相信你会大有收获。
压缩包附带WTL头文件,解压后包含就行。
2025/1/1 12:56:30 931KB VC++
1
本书将着重介绍高层次综合(HLS)算法的使用并以此完成一些比较具体、细分的FPGA应用。
我们的目的是让读者认识到用HLS创造并优化硬件设计的好处。
当然,FPGA的并行编程肯定是有别于在多核处理器、GPU上实行的并行编程,但是一些最关键的概念是相似的,例如,设计者必须充分理解内存层级和带宽、空间局部性与时间局部性、并行结构和计算与存储之间的取舍与平衡。
2024/12/31 2:28:42 20.52MB FPGA 并行编程 HLS
1
现在有很多粒子群算法不规范,国外有些工具包过于复杂,功能太大而无从下手,国内的一些文档上的方法多数都是一个粒子式地简单循环,不能够全面地发挥Matlab基于矩阵计算的能力,本程序中的主程序及目标函数均基于向量形式,另外,很多具体程序中缺乏对约束问题进行考虑,本程序可以针对约束问题给出结果以查看约束处理情况,另外还可以选择是否显示离线和在线性能等,再者,本工具包里包含有全局算法及局部算法,试验后发现,局部算法的性能要好得多(可能针对不同问题吧),最后,本算法模块化层次条理清晰,说明具体,可以简单改造成各种改进型算法。
1
用C++实现了梯度下降求多元函数极值的算法,有可能会陷入局部最优解。
2024/12/24 16:58:37 2KB 梯度下降
1
基于最小生成树的全局优化立体匹配方法,全局优化,效果非常好,跑赢局部优化方法,效果刚刚的。
并且已经进行了simd优化
5.13MB 立体匹配
1
自己花钱买的电子书,高清完整版!很实用的教材,读起来一点也不晦涩。
目录译者序前言第1章概论1.1推动因素1.2基本计算机组成1.3分布式系统的定义1.4我们的模型1.5互连网络1.6应用与标准1.7范围1.8参考资料来源参考文献习题第2章分布式程序设计语言2.1分布式程序设计支持的需求2.2并行/分布式程序设计语言概述2.3并行性的表示2.4进程通信与同步2.5远程过程调用2.6健壮性第3章分布式系统设计的形式方法3.1模型的介绍3.1.1状态机模型3.1.2佩特里网3.2因果相关事件3.2.1发生在先关系3.2.2时空视图3.2.3交叉视图3.3全局状态3.3.1时空视图中的全局状态3.3.2全局状态:一个形式定义3.3.3全局状态的“快照”3.3.4一致全局状态的充要条件3.4逻辑时钟3.4.1标量逻辑时钟3.4.2扩展3.4.3有效实现3.4.4物理时钟3.5应用3.5.1一个全序应用:分布式互斥3.5.2一个逻辑向量时钟应用:消息的排序3.6分布式控制算法的分类3.7分布式算法的复杂性第4章互斥和选举算法4.1互斥4.2非基于令牌的解决方案4.2.1Lamport算法的简单扩展4.2.2Ricart和Agrawala的第一个算法4.2.3Maekawa的算法4.3基于令牌的解决方案4.3.1Ricart和Agrawala的第二个算法4.3.2一个简单的基于令牌环的算法4.3.3一个基于令牌环的容错算法4.3.4基于令牌的使用其他逻辑结构的互斥4.4选举4.4.1Chang和Roberts的算法4.4.2非基于比较的算法4.5投标4.6自稳定第5章死锁的预防、避免和检测5.1死锁问题5.1.1死锁发生的条件5.1.2图论模型5.1.3处理死锁的策略5.1.4请求模型5.1.5资源和进程模型5.1.6死锁条件5.2死锁预防5.3一个死锁预防的例子:分布式数据库系统5.4死锁避免5.5一个死锁避免的例子:多机器人的灵活装配单元5.6死锁检测和恢复5.6.1集中式方法5.6.2分布式方法5.6.3等级式方法5.7死锁检测和恢复的例子5.7.1AND模型下的Chandy,Misra和Hass算法5.7.2AND模型下的Mitchell和Merritt算法5.7.3OR模型下的Chandy,Misra和Hass算法第6章分布式路由算法6.1导论6.1.1拓扑6.1.2交换6.1.3通信类型6.1.4路由6.1.5路由函数6.2一般类型的最短路径路由6.2.1Dijkstra集中式算法6.2.2Ford的分布式算法6.2.3ARPAnet的路由策略6.3特殊类型网络中的单播6.3.1双向环6.3.2网格和圆环6.3.3超立方6.4特殊类型网络中的广播6.4.1环6.4.22维网格和圆环6.4.3超立方6.5特殊类型网络中的组播6.5.1一般方法6.5.2基于路径的方法6.5.3基于树的方法第7章自适应、无死锁和容错路由7.1虚信道和虚网络7.2完全自适应和无死锁路由7.2.1虚信道类7.2.2逃逸信道7.3部分自适应和无死锁路由7.4容错单播:一般方法7.52维网格和圆环中的容错单播7.5.1基于局部信息的路由7.5.2基于有限全局信息的路由7.5.3基于其他故障模型的路由7.6超立方中的容错单播7.6.1基于局部信息的模型7.6.2基于有限全局信息的模型:安全等级7.6.3基于扩展安全等级模型的路由:安全向量7.7容错广播7.7.1一般方法7.7.2使用全局信息的广播7.7.3使用安全等级进行广播7.8容错组播7.8.1一般方法7.8.2基于路径的路由7.8.3使用安全等级在超立方中进行组播第8章分布式系统的可靠性8.1基本模型8.2容错系统设计的构件模块8.2.1稳定存储器8.2.2故障-停止处理器8.2.3原子操作8.3节点故障的处理8.3.1向后式恢复8.3.2前卷式恢复8.4向后恢复中的问题8.4.1检查点的存储8.4.2检查点方法8.5处理拜占庭式故障8.5.1同步系统中的一致协议8.5.2对一个发送者的一致8.5.3对多个发送者的一致8.5.4不同模型下的一致8.5.5对验证消息的一致8.6处理通信故障8.7处理软件故障第9章静态负载分配9.1负载分配的分类9.2静态负载分配9.2.1处理器互连9.2.2任务划分9.2.3任务分配9.3不同调度模型概述9.4基于任务优先图的任务调度9.5案例学习:两种最优调度算法9.6基于任务相互关系图的任务调度9.7案例学习:域划分9.8使用其他模型和目标的调度9.8.1网络流量技术:有不同处理器能力的任务相互关系图9.8.2速率单调优先调度和期限驱动调度:带实时限制的定期任务9.8.3通过任务复制实现故障安全调度:树结构的任务优先图9.9未来的研究方向第10章动态负载分配10.1动态负载分配10.1.1动态负载分配的组成要素10.1.2动态负载分配算法10.2负载平衡设计决策10.2.1静态算法对动态算法10.2.2多样化信息策略10.2.3集中控制算法和分散控制算法10.2.4移植启动策略10.2.5资源复制10.2.6进程分类10.2.7操作系统和独立任务启动策略10.2.8开环控制和闭环控制10.2.9使用硬件和使用软件10.3移植策略:发送者启动和接收者启动10.4负载平衡使用的参数10.4.1系统大小10.4.2系统负载10.4.3系统交通强度10.4.4移植阈值10.4.5任务大小10.4.6管理成本10.4.7响应时间10.4.8负载平衡视界10.4.9资源要求10.5其他相关因素10.5.1编码文件和数据文件10.5.2系统稳定性10.5.3系统体系结构10.6负载平衡算法实例10.6.1直接算法10.6.2最近邻居算法:扩散10.6.3最近邻居算法:梯度10.6.4最近邻居算法:维交换10.7案例学习:超立方体多计算机上的负载平衡10.8未来的研究方向第11章分布式数据管理11.1基本概念11.2可串行性理论11.3并发控制11.3.1基于锁的并发控制11.3.2基于时戳的并发控制11.3.3乐观的并发控制11.4复制和一致性管理11.4.1主站点方法11.4.2活动复制11.4.3选举协议11.4.4网络划分的乐观方法:版本号向量11.4.5网络分割的悲观方法:动态选举11.5分布式可靠性协议第12章分布式系统的应用12.1分布式操作系统12.1.1服务器结构12.1.2八种服务类型12.1.3基于微内核的系统12.2分布式文件系统12.2.1文件存取模型12.2.2文件共享语义12.2.3文件系统合并12.2.4保护12.2.5命名和名字服务12.2.6加密12.2.7缓存12.3分布式共享内存12.3.1内存相关性问题12.3.2Stumm和Zhou的分类12.3.3Li和Hudak的分类12.4分布式数据库系统12.5异型处理12.6分布式系统的未来研究方向附录DCDL中的通用符号列表
2024/12/20 22:56:08 29.64MB 分布式系统设计 jie wu著 高传善
1
一篇论文。
摘要:针对置换流水车间调度问题,提出了一种基于蚁群优化的调度算法。
该算法的要点是将NEH启发式算法和蚁群优化结合起来:首先,将蚁群优化中的能见度定义为NEH中所用的工作加工时间之和。
其次,对于部分解采用了NEH中的步骤2和步骤3进行局部调整。
最后,对构造出的解做插入型局部搜索。
用所提算法对置换流水车间调度问题的基准问题进行了测试,测试结果表明提出算法的有效性。
1
基于matlab的图像融合代码实现算法程序,图像融合,小波,局部能量
2024/12/6 10:07:18 23KB matlab,图像融合
1
共 479 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡