###无线传感器网络时间同步技术综述####引言无线传感器网络(WirelessSensorNetworks,WSN)是一种能够自主构建的网络形式,通过在指定区域内部署大量的传感器节点来实现对环境信息的采集与传输。
这些传感器节点通过无线方式相互连接,并能够形成一个多跳的自组织网络,用于监测特定环境下的数据并将数据发送至远程中心进行处理。
随着WSN在各个领域的广泛应用,如交通监控、环境保护、军事侦察等,确保网络中各节点之间的时间同步变得尤为重要。
####同步技术研究现状时间同步技术是无线传感器网络中的核心技术之一,其主要目的是确保网络中的所有节点能够维持一致的时间基准。
这项技术的发展相对较晚,直到2002年才在HotNets会议上被首次提出。
自那时起,学术界和工业界对此展开了广泛的研究,开发出了一系列有效的时间同步算法。
对于单跳网络而言,时间同步技术已经相当成熟,但在多跳网络环境下,由于同步误差随距离增加而累积,现有的单跳网络同步方法很难直接应用于多跳网络中。
此外,如果考虑到传感器节点可能的移动性,时间同步技术的设计将会变得更加复杂。
####时间同步算法针对无线传感器网络的时间同步需求,研究人员提出了多种算法,其中最具代表性的三种算法分别为泛洪时间同步协议(FloodingTimeSynchronizationProtocol,FTSP)、根时钟同步协议(Root-BasedSynchronization,RBS)以及局部时间同步协议(LocalizedTimeSynchronization,LTS)。
#####泛洪时间同步协议(FTSP)FTSP是一种分布式时间同步算法,它通过在网络中泛洪同步消息来实现节点间的时间同步。
每个节点都会接收到来自邻居节点的时间戳,并据此调整自己的时钟,以减少时钟偏差。
该协议简单易实现,适用于小型网络,但对于大规模网络可能存在较大的同步误差。
#####根时钟同步协议(RBS)RBS协议采用了一个中心节点作为根节点,其他所有节点都需要与根节点保持时间同步。
这种中心化的同步机制能够有效地减少同步误差的累积,但对根节点的依赖性较高,一旦根节点出现故障,整个网络的同步性将受到严重影响。
#####局部时间同步协议(LTS)LTS协议是一种去中心化的同步算法,旨在解决多跳网络中的时间同步问题。
每个节点仅需与其直接邻居节点进行同步,从而减少了全局同步的复杂度。
这种方法适用于动态变化的网络环境,但由于依赖局部信息,可能会导致全局时间偏差的累积。
####小结通过对无线传感器网络中时间同步技术的研究现状及几种典型同步算法的介绍,我们可以看出时间同步技术在WSN中具有重要意义。
虽然目前已经有了一些有效的解决方案,但在实际应用中仍存在诸多挑战,如同步精度、能耗控制以及适应动态网络环境的能力等。
未来的研究工作需要继续探索更高效、更稳定的时间同步机制,以满足日益增长的应用需求。
###基于无线传感器网络的环境监测系统####网络系统简介基于无线传感器网络的环境监测系统是一种利用大量传感器节点实时采集并传输环境数据的系统。
这类系统通常由多个传感器节点组成,这些节点可以监测各种环境参数,如温度、湿度、光照强度等,并将数据传输至中央处理单元进行分析处理。
####网络系统结构-**总体结构**:环境监测系统的核心是传感器节点,它们通过无线方式相互连接,并能够自动构建一个多跳网络。
此外,还需要设置一个或多个会聚节点,用于收集来自传感器节点的数据,并将其转发至数据中心或用户终端。
-**传感器节点结构**:传感器节点通常包含一个或多个传感器、处理器、无线通信模块以及电源供应部分。
这些节点负责数据的采集、处理及发送。
-**会聚节点结构**:会聚节点的主要功能是汇总来自多个传感器节点的数据,并通过有线或无线方式将这些数据传输至远程服务器或用户终端。
会聚节点通常具备更强的计算能力和存储能力,以便支持大数据量的处理和传输。
####应用无线传感器网络的意义无线传感器网络在环境监测方面的应用具有重要意义:-**提高监测精度**:通过部署大量传感器节点,可以实现对环境参数的高密度监测,从而提高数据的准确性和可靠性。
-**降低成本**:相比传统的监测手段,无线传感器网络可以显著降低建设和维护成本。
-**增强实时性**:无线传感器网络能够实时传输数据,使用户能够及时获取环境变化信息,这对于需要快速响应的情况尤为关键。
###学习心得通过本次课程的学习,我对无线传感器网络有了更加深入的理解。
特别是关于时间同步技术的重要性及其在实际应用中的挑战,这不仅加深了我对理论知识的认识,也为将来可能从事的相关工作打下了坚实的基础。
此外,基于无线传感器网络的环境监测系统的介绍让我看到了这项技术在环境保护方面的巨大潜力,激发了我对未来进一步探索的兴趣。
###结语无线传感器网络作为一种新兴的技术,在多个领域展现出巨大的应用前景。
时间同步技术作为其核心组成部分之一,对于保证网络性能至关重要。
随着技术的进步,相信未来的无线传感器网络将更加完善,为人们的生活带来更多便利。
2025/5/7 17:13:57 191KB
1
缺陷检测数据集,带标签。
数据量500+。
从网站上下载的。
2025/5/7 10:10:45 217.48MB CNN
1
TPC-H(商业智能计算测试)是TPC的重要测试标准之一,主要用来模拟真实商业的应用环境。
TPC-H用3NF实现了一个数据仓库,共包含8个基本关系/表,其中表REGION和表NATION的记录数是固定的(分别为5和25),其它6个表的记录数,则随所设定的参数SF而有所不同,其数据量可以设定从1GB~3TB不等。
有8个级别供用户选择
2025/4/26 22:43:18 22.82MB 大数据 flink
1
pycharm运行gprmax能避免cmd操作中反复复制粘贴的过程,便于模拟,对仿真数据量较大时特别有用,尤其是机器学习、深度学习所需大量数据的仿真,该资源为pycharm运行gprmax的项目源码
2025/4/22 16:57:19 72KB gprmax3.0 pycharm
1
MySQL8.0.15是一个重要的数据库管理系统版本,由Oracle公司维护和开发。
这个版本在MySQL的发展历程中引入了许多新特性和改进,旨在提供更高的性能、安全性和可扩展性。
以下是对MySQL8.0.15中关键知识点的详细解释:1.**增强的性能**:MySQL8.0系列着重于提升查询处理速度和并发性能。
例如,InnoDB存储引擎的优化使得多线程并行插入和更新更加高效。
另外,分区功能的改进也提高了大数据量表的操作性能。
2.**窗口函数**:MySQL8.0引入了SQL标准的窗口函数,如ROW_NUMBER()、RANK()和DENSE_RANK(),这使得在复杂的数据分析和排序场景中编写更简洁的查询。
3.**JSON函数增强**:MySQL8.0提供了更多用于操作JSON数据类型的函数,比如JSON_EXTRACT、JSON_INSERT、JSON_REPLACE和JSON_ARRAY,增强了对非结构化数据的支持。
4.**通用表表达式(CommonTableExpressions,CTE)**:CTE是一种高级查询构造,允许用户定义临时的结果集,可以用于复杂的子查询或递归查询,使查询代码更清晰易读。
5.**动态柱状图(DynamicColumns)**:虽然不是标准SQL功能,但MySQL8.0提供了一种存储多个值的方法,类似于NoSQL数据库的键值对,这在某些场景下可以提高数据存储的灵活性。
6.**更好的密码安全**:MySQL8.0引入了新的默认加密算法,如caching_sha2_password,增强了数据库系统的安全性。
7.**增强的复制功能**:包括半同步复制的改进,以及GroupReplication的引入,提供了高可用性和故障切换能力。
8.**在线DDL(DataDefinitionLanguage)**:在8.0版本中,许多DDL操作可以在线完成,这意味着在表结构改变时,用户不必等待长时间的锁定,减少了对业务的影响。
9.**InnoDB存储引擎改进**:包括更好的内存管理,更高效的行格式(如DYNAMIC和COMPRESSED),以及支持更大页大小,以适应更大的数据记录。
10.**性能分析工具**:MySQL8.0提供了PerformanceSchema的增强,帮助管理员监控和优化系统性能。
11.**分区表的增强**:增加了更多的分区类型,如RANGECOLUMNS和LISTCOLUMNS,使得分区策略更为灵活。
12.**改进的备份和恢复**:MySQL8.0提供了新的备份工具,如`mysqldump`和`mysqlpump`,它们可以更快、更可靠地备份和恢复数据库。
在实际使用中,"mysql-8.0.15-winx64"压缩包包含了适用于Windows64位系统的MySQL安装文件。
安装后,可以通过配置服务器参数、创建数据库、用户权限设置等步骤来搭建和管理数据库环境。
在管理和开发过程中,应充分利用上述新特性,以实现更高效、安全的数据管理。
2025/4/15 21:37:48 184.15MB MYSQL8 mysql
1
最近几年,例如YAGO和DBpedia等大规模知识库发展有了很大的进步。
知识库提供了大量的不同种类的实体信息,如人、国家、河流、城市大学等等,同时知识库包含了大量的在实体(entity)间的关系既事实(fact)。
当今的知识库包含的数据量是巨大的通常有百万个实体和上亿个描述实体间关系的事实数据。
虽然目前的知识库存在大量的实体和事实数据,但是这样大规模的数据仍然不完整。
目前构建知识库的方法主要有两种,一种是从大量的文本中抽取事实但这种方法必然会带来大量的噪声数据,第二是人工扩展,但这样的方法对于时间的开销是极大的。
如果确保一个知识库是完整的则必须花费很大的努力来抽取大量的事实,并检查事实的正确性,因为只有正确的事实加入到知识库中才是有意义的。
同时知识库的本身由于有足够的信息可以推理出更多的新的事实。
例如有这样一个例子,一个知识库包含一组事实是孩子c有一个妈妈m,这样可以推理得出孩子妈妈的丈夫f很可能是孩子的父亲。
该逻辑规则形式化的描述如下:motherof(m,c)∧marriedTo(m,f)⟹fatherof(f,c)挖掘这种规则可帮助做一下四种事情:1、利用这种规则来推理出新的事实,而这些被挖掘出的新的事实可以使知识库更完整。
2、这些规则可以检测出知识库潜在的错误例如一个陈述是一个与一个男孩无关的人是这个男孩的父亲,这样的陈述很可能是错误的。
3、有很多推理工具依赖其他工具提供规则,所以这些被挖掘出来的规则可以用于推理。
4、这些规则描述一个普遍的规律,这些规律可以帮我我们理解分析知识库中的数据,如找到一些国家通常与说同一种语言的国家交易。
或结婚是一个对称关系,或使用同一个乐器的音乐家通常互相影响等等。
AMIE的目标是从RDF格式的知识库中挖掘如上所述的逻辑规则,在语义网(SemanticWeb)中存在大量的RDF知识库如YAGO、Freebase和DBpedia等。
这些知识库使用RDF三元组(S,P,O)提供二元关系(binaryrelation)的描述。
由于知识库一般只包含正例而(S,P,O)没有反例(S,¬P,O),所以RDF这样的知识库中仅能通过正例来推理。
进一步来说在RDF知识库上的操作是基于开放世界假设(OWA)的。
在开放世界假设下,一个事实没有在知识库中存在那么我们不能说这个事实是错误的,只能说这个陈述是未知的。
这与标准的数据库在封闭世界假设的设定有本质上的区别。
例如在知识库中没有包含marry(a,b),在封闭世界假设中我们可以得出这个a没有和b结婚而在开放世界假设下我们只能说a可能结婚了也可能单身。
压缩包内包含AMIE可运行源代码与相应文档资料,欢迎下载参考
2025/4/10 17:38:48 2.43MB 不完整 知识库 关联规则 数据挖掘
1
可从后台写循环获取上万数据,赋值到js全局变量,每次滚动显示所需分页数据,不会一次性显示大数据量导致页面滚动卡死,从ag-grid控件中获取想法,该文件可参考,ag-grid利用css3不兼容ie8,已换成别的想法支持
2025/4/1 1:02:25 4KB 表格大量数据
1
精准电量(Accubattery)是安卓端非常好用的专业电池健康检测维护管理软件。
它基于一系列科学的研究和测试信息数据量都很大,它能够测试出设备电池的实际容量,并查看电池损耗,而且还可以通过设置充电到达标准并提醒拔掉充电器,实现保护充电增加电池循环寿命,从而让您的电池保持健康。
1
在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上要重视它,战术上又要藐视它。
先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右,假如每天有10个小时的服务时间,平均QPS只有30左右。
对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单。
为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往
1
用于将一个数据量超大的CSV文件分隔成多个数据量较小的CSV文件
2025/2/28 4:16:04 17KB 拆分大容量CSV文件
1
共 164 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡