视觉导航是智能采棉机器人的基本技术之一。
棉田组成复杂,存在遮挡和照明,难以准确识别出犁沟,从而提取出导航线。
提出了一种基于水平样条分割的野外导航路径提取方法。
首先,通过OTSU阈值算法对RGBcolor.space中的彩色图像进行预处理,以分割犁沟的二值图像。
棉田图像成分分为四类:犁沟(成分包括土地,枯萎的叶子等)。

),棉纤维,棉的其他器官和外部区域或阻塞物。
通过利用HSV模型的色相和值的显着差异,作者将阈值分为两个步骤。
首先,他们在S通道中分割棉绒,然后在棉线区域之外的区域中在V.通道中分割犁沟。
另外,需要形状学处理以滤出小的噪声区域。
其次,水平样条用于分割二值图像。
作者检测水平样条中的连通区域,并合并由棉毛或附近大连通区域中的亮点引起的孤立的小区域,从而获得犁沟的连通区域。
第三,根据相邻导航线候选之间的距离较小的原理,以图像底部的中心为起点,并从连通域的中点开始依次选择候选点。
最后,作者对连接域的数量进行计数,并计算连接域边界线的参数变化,以确保机器人是否到达了野外或遇到障碍物。
如果没有异常,则使用minimum.squares方法由导航点拟合导航路径。
2017/7/15 20:54:57 896KB otton-Picking Robot Horizontal Spline
1
针对基于机器视觉的农业导航机器人在图像处理时易受光照变化影响和常规导航线检测算法实时性、稳健性不高等问题,提出了YCrCg颜色模型,选择该颜色模型中与光照无关的Cg分量进行后续图像处理,采用基于二维直方图的模糊C均值聚类法(FCM)进行图像分割,并根据图像中作物行的特点,提出了基于直线扫描的作物行直线检测算法。
该算法将图像底边和顶边像素点作为直线的两个端点,通过移动上下端点位置产生不同斜率直线,选择包含目标点最多的直线作为作物行中心线。
实验表明,不同光照下基于YCrCg颜色模型的图像分割可以有效地识别出作物行,处理一幅640pixel×480pixel图片耗时约为16.5ms,直线扫描算法能快速精确的检测出导航线,与最小二乘法、Hough变换等算法相比具有速度快、抗干扰性强等优点。
2020/4/17 11:09:47 4.05MB 机器视觉 颜色模型 图像分割 导航线
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡