机器学习算法
2024/12/27 16:12:52 564KB 机器学习算法
1
贝叶斯网络学习算法――k2算法,对于学习数据挖掘的人有用的,涉及到了分类预测算法
2024/12/22 0:23:22 642B 贝叶斯算法 分类规则 数据挖掘
1
目前有很多关于多标签的学习算法,依据解决问题的角度,这些算法可以分为两大类:一是基于问题转化(ProblemTransformation)的方法,二是基于算法适应的方法和算法适应方法(AlgorithmAdaptation)。
基于问题转化的多标记分类是转化问题数据,使之适用现有算法;
基于算法适应的方法是指针对某一特定的算法进行扩展,从而能够直接处理多标记数据,改进算法,适应数据。
2024/12/8 21:35:26 102KB 多标签数据 分类策略
1
SVM支持向量机,预测分类回归,支持向量机(SupportVectorMachine,SVM)是CorinnaCortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。
2024/11/26 14:13:05 415KB SVM 支持向量机
1
源码源自mathworks文件交换中心,优于SMOTE的非平衡学习算法。
(有意免金币,但无法设置)
2024/11/23 18:42:08 6KB 机器学习 非平衡学习
1
除机器学习安装工具包外,里面还有包含了多种机器学习算法里,如BP神经网络、SVM、SOM等。
希望可以帮助到大家
2024/10/9 14:11:05 24.1MB Labview 机器学习
1
weka是一款由Waikato大学研究的基于Java的用于数据挖掘和知识发现的开源项目,其中集成了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理、关联规则挖掘、分类、聚类等,并提供了丰富的可视化功能。
同时,由于其是一款开源软件,所以也可以用于数据挖掘的二次开发和算法研究。
文章介绍了利用开源软件WEKA作为数据挖掘工具,通过Apriori算法,对高校图书馆流通历史数据进行挖掘分析。
2024/10/6 14:17:03 166KB 数据挖掘实例 weka 关联规则算法
1
基于实例和特征的迁移学习算法研究
2024/9/30 13:48:53 4.36MB Tranfer Learning
1
CAE,CNN,NN,SAE等等matlab版深度学习算法合集,以及相关测试数据,拿到就能直接用。
2024/9/29 12:11:21 28.34MB DeepLearning 合集 算法 深度学习
1
adaboost演示demo(基于Matlab,学习算法包括决策树、神经网络、线性回归、在线贝叶斯分类器等),动态GUI显示学习过程、vote过程等
2024/9/6 2:43:42 13KB 机器学习
1
共 148 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡